Find the distance between the origin and the
point:
(1) (-8, 6)
(ii) (8, -15)
(ii) (-5, -12)
Answers
Question:
Find the distance between the origin and the point
- (-8, 6)
- (8, -15)
- (-5, -12)
Answer:
Part 1:
- A→(-8,6)
- B→(0,0)
Step by step explanation:
Part 2:
- A→(8, -15)
- B→(0,0)
Step by step explanation:
Part 3:
- A→(-5,-12)
- B→(0,0)
Step by step explanation:
________________________________
With regards!
★Dull Star★
Answer:
hope it's help you
Step-by-step explanation:
Find the distance between the origin and the point
(-8, 6)
(8, -15)
(-5, -12)
Answer:
Part 1:
A→(-8,6)
B→(0,0)
Step by step explanation:
\implies AB = \sqrt{ {(0 - ( - 8))}^{2} + {(0 - 6)}^{2} }⟹AB=
(0−(−8))
2
+(0−6)
2
\implies AB= \sqrt{ {(0 + 8)}^{2} + {( - 6)}^{2} }⟹AB=
(0+8)
2
+(−6)
2
\implies AB = \sqrt{64 + 36}⟹AB=
64+36
\implies AB = \sqrt{100}⟹AB=
100
\implies \orange{ AB = 10✓}⟹AB=10✓
Part 2:
A→(8, -15)
B→(0,0)
Step by step explanation:
\implies AB = \sqrt{(8 - 0 {)}^{2} + ( - 15 - 0 {)}^{2} }⟹AB=
(8−0)
2
+(−15−0)
2
\implies AB = \sqrt{ {(8)}^{2} + {( - 15)}^{2} }⟹AB=
(8)
2
+(−15)
2
\implies AB = \sqrt{64 + 225}⟹AB=
64+225
\implies AB = \sqrt{289}⟹AB=
289
\implies AB = \sqrt{17 \times 17}⟹AB=
17×17
\implies\purple{ AB = 17✓}⟹AB=17✓
Part 3:
A→(-5,-12)
B→(0,0)
Step by step explanation:
\implies AB = \sqrt{ {( - 5 - 0)}^{2} + {( - 12 - 0)}^{2} }⟹AB=
(−5−0)
2
+(−12−0)
2
\implies AB = \sqrt{ {( - 5)}^{2} + {( - 12)}^{2} }⟹AB=
(−5)
2
+(−12)
2
\implies AB = \sqrt{25 + 144}⟹AB=
25+144
\implies AB = \sqrt{169}⟹AB=
169
\implies \pink{AB = 13✓}⟹AB=13✓