Math, asked by sandesharyal418, 1 month ago

find the distance between the parallel lines 3x + 2y = 6 and 3x + 2y = 12​

Answers

Answered by TrustedAnswerer19
24

   \pink{ \boxed{ \boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:Page-\:1:\:\maltese}\\\\ \maltese  \bf \: we \: know \: that\:  \\  \\  \sf \: if \:  \:  \: ax + by + c_1 = 0 \:  \:  \:  \:  \: and \\  \sf \:  \: ax + by + c_2 = 0 \:  \:  \: are \: two \: parallel \:  \\  \sf \: line \: then \: distance \: between \: them \\  \\   \blue{\sf \: d =  \frac{ |c_1 - c_2| }{ \sqrt{ {a}^{2} +  {b}^{2}  } } \:  \: unit}  \\ \end{array}}}}

   \pink{ \boxed{\boxed{\begin{array}{cc} \bf \underline{ \maltese\:\:Page-\:2:\:\maltese}\\\\\maltese  \bf \: given \: that \\  \\   \bf \: 3x + 2y = 6 \\ \bf \implies \: 3x  + 2y - 6 = 0 \:  \:  \:  -  -  - (1) \\  \\  and \\  \\  \blue{ {{\begin{array}{cc}\:  \bf \:  \: 3x + 2y = 12  \\ \bf \implies \: 3x + 2y  - 12 = 0 \:  \:  \:  -  -  - (2) \\  \\   \orange{ {{\begin{array}{cc} \odot \:\: \bf   eqn.(1) \:  \: and \:  \: eqn.(2) \:  \: are \: prallel \\  \bf \: so \: distance \:  \: between \: them \\  \\  \bf \: d =  \frac{ | - 6 -( - 12)| }{ \sqrt{ {3}^{2}  +  {2}^{2} } } \\  \\   = \frac{ | - 6 + 12| }{ \sqrt{9 + 4} }  \\  \\  =  \frac{ | 6| }{ \sqrt{13} }  \\  \\  \bf \therefore  \:  \: d =  \frac{6}{ \sqrt{13} } \:  \: unit \:  \end{array}}}} \end{array}}}}  \: \end{array}}}}

Similar questions