Math, asked by PriyaVaghela1745, 1 year ago

Find the distance between the parallel lines 3x+4y-3=0 and 6x+8y-1=0

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{Parallel lines are}

\mathsf{3x+4y-3=0\;\;and \;\;6x+8y-1=0}

\underline{\textbf{To find:}}

\textsf{The distance between the parallel lines}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{3x+4y-3=0\;\;and \;\;6x+8y-1=0}

\textsf{Divide bothsides of the second equation by 2}

\mathsf{3x+4y-3=0\;\;and \;\;3x+4y-\dfrac{1}{2}=0}

\textbf{Distance between the parallel lines}

\mathsf{=\left|\dfrac{c_1-c_2}{\sqrt{a^2+b^2}}\right|}

\mathsf{=\left|\dfrac{-3-\left(\dfrac{-1}{2}\right)}{\sqrt{3^2+4^2}}\right|}

\mathsf{=\left|\dfrac{-3+\dfrac{1}{2}}{\sqrt{9+16}}\right|}

\mathsf{=\left|\dfrac{\dfrac{-6+1}{2}}{\sqrt{25}}\right|}

\mathsf{=\left|\dfrac{\dfrac{-5}{2}}{5}\right|}

\mathsf{=\left|\dfrac{-1}{2}\right|}

\mathsf{=\dfrac{1}{2}}

\therefore\textbf{The distance between the given parallel lines}

\bf\dfrac{1}{2}\;\textbf{units}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{6cm}$\\\mathsf{The\;distance\;between\;the\;parallel\;lines}\\\\\mathsf{ax+by+c_1=0\;and\;ax+by+c_2=0\;is}\\\\\mathsf{\left|\dfrac{c_1-c_2}{\sqrt{a^2+b^2}}\right|}\\$\end{minipage}}

Answered by vaddikasulu701
0

Answer:

Step-by-step explanation:

Similar questions