Math, asked by anubhavsaini2007, 7 months ago

find the distance between the parallel side of a trapezium parallel side are 49 cm and 23cm and the area of trapezium is 864cm2​

Answers

Answered by prince5132
45

GIVEN :-

  • Parallel sides of trapezium = 49 and 23 cm.
  • Area of trapezium = 864 cm².

TO FIND :-

  • distance between the parallel sides (Height).

SOLUTION :-

 \\  :  \implies \displaystyle \sf \: Area_{( Trapezium)} =  \frac{1}{2}  \bigg \lgroup \: sum \: of \:  \parallel \: sides \bigg \rgroup \times height \\  \\  \\

 :  \implies \displaystyle \sf \:864 =  \dfrac{1}{2}  \bigg \lgroup 49 + 23\bigg \rgroup \times height \\  \\  \\

 :  \implies \displaystyle \sf \:864 =  \dfrac{1}{2}  \times 72 \times height \\  \\  \\

 :  \implies \displaystyle \sf \:864 = 36 \times height \\  \\  \\

 :  \implies \displaystyle \sf \:height =  \dfrac{864}{36}  \\  \\  \\

 :  \implies  \underline{ \boxed{\displaystyle \sf \:height = 24 \: cm.}} \\  \\

 \therefore \underline{\displaystyle \sf \: distance \ between \ the \ parallel \ sides \ (Height) \ is \ 24 \ cm.}

Answered by Anonymous
26

Given:

 \rm \bull Length  \: of \:  the \: parallel \: sides = 49cm \: and \: 23cm

 \rm \bull Area \: of \: trapezium =  {864cm}^{2}

Find:

 \rm \bull Distance \: between \: parallel \: sides

Solution:

we, know that

\underline{\boxed{ \rm Area  \: of  \: trapezium =  \frac{1}{2}  \times (sum \: of \: parallel \: sides)(distance \: between \: them)}}

So,

\rm \to Area  \: of  \: trapezium = \frac{h}{2}  \times (a + b)

where, a and b are the parallel sides of the trapezium and h is the height.

Now,

\rm  \implies 864 = \frac{h}{2}  \times (49 + 23) \\  \\  \\

\rm  \implies 864 = \frac{h}{2}  \times (72) \\  \\  \\

\rm  \implies 864 = 36h \\  \\  \\

\rm  \implies h =  \frac{864}{36}  \\  \\  \\

\rm  \implies h =  24cm \\  \\  \\

 \underline{ \underline{\rm \to h =  24cm}}

_______________

Hence, the distance between the parallel sides of the given trapezium will be 24cm

Similar questions