Math, asked by deenadayalandeenaday, 3 months ago

find the distance between the point (-4 , 3) &(2-3) please tell the answer friends ​

Answers

Answered by ItzWhiteStorm
105

Let's Understand the question:

Find the distance between the point (-4,3) & (2,-3). So,we should find the distance of the two points.

To Find:

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:\to \sf{Distance \: between \: the \: points = \:  ? }

Solution:

We know that,

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bullet \:  \sf{AB =  \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

Let us consider that,

\sf{x_1\:=\:-4}

\sf{x_2\:=\:2}

\sf{y_1\:=\:3}

\sf{y_2\:=\:-3}

Applying the values,

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longmapsto \sf{ AB =\sqrt{\big(2-(-4)\big)^{2}  +  \big( - 3 - 3 \big)^{2}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \longmapsto\sf{AB=\sqrt{(2 + 4) ^{2} + (-3-3)^{2}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \longmapsto \sf{AB=   \sqrt{(6)^{2} + ( - 6)^{2}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \: \longmapsto \sf{AB=\sqrt{36 + 36}}

\:  \:  \:  \:  \:  \:  \:  \:  \longmapsto \sf{AB= \sqrt{72}} \: units

Thus,The distance between the two points is \sqrt{72}units.

________________________________

Answered by TheMist
192
\huge \sf \underline{Answer}:
\large \implies \sf\sqrt{72}Units
\\ \\ \huge \sf \underline{Solution}:

\large \sf \underline{Given}:
Point (-4 , 3) &(2-3)

\\ \large \sf \underline{To \: Find}:
Distance between the points.

We know that,
\bf {Distance \: between \: two \: points \: = }
 \large \boxed{\tt XY = \sqrt{(x2-x1)^2 +(y2-y1)^2 }}
so,
\sf Distance = \sqrt{(2-(-4))^2 +(-3-3)^2 }
 \\ \implies \sqrt{(6)^2 +(-6)^2 }
 \\ \implies \sqrt{36 +36 }
 \\ \sf \implies \sqrt{72 } Unit

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Therefore, Distance between the point (-4 , 3) &(2-3) is   \sf  \sqrt{72 } Unit
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions