Math, asked by charithacherry711, 1 month ago

find the distance between the point (acosteta,0) and (0,asinteta)​

Answers

Answered by Anonymous
18

\malteseGiven to find the  distance between the points (acos\theta, 0)  \:and (0, asin\theta)

\malteseSOLUTION :-

For finding the distance between the two points(x_1, y_1) and (x_2, y_2) we have formula that is

\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Putting down the values in formula

x_1 = acos\theta\\x_2 = 0

y_1 = 0 \\y_2 = asin\theta

So, distance between them is

= \sqrt{(acos\theta-0)^2+(0-asin\theta)^2}

=\sqrt{(acos\theta)^2+(-asin\theta)^2}

=\sqrt{a^2cos^2\theta+a^2sin^2\theta}

Take common a²

= \sqrt{a^2(cos^2\theta+sin^2\theta)}

As we know from trigonometric identities sin²A+cos²A= 1

=\sqrt{a^2(1)}

= \sqrt{a^2}

= a

{\boxed{The\:  distance\: between\: the\: points (acos\theta, 0)  \:and (0, asin\theta) \: is \: a\: units}}

Know more :-

Centroid formula:-

\bigg(\dfrac{x_1+x_2+x_3}{3},\dfrac{y_1+y_2+y_3}{3}\bigg)

Section formula Internal division:-

\bigg(\dfrac{mx_2+nx_1}{m+n}, \dfrac{my_2+ny_1}{m+n}\bigg)

Section formula External division:-

\bigg(\dfrac{mx_2-nx_1}{m-n}, \dfrac{my_2-ny_1}{m-n}\bigg)

Mid point formula:-

\bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2}\bigg)

Similar questions