Math, asked by mdafzalkhanips, 16 days ago

Find the distance between the point P (a+b,a-b)
and Q (a-b, a+b)​

Answers

Answered by ImperialGladiator
42

Answer:

  • 2b√2 units

Explanation:

Given points,

  • P(a+b, a-b)
  • Q(a-b, a+b)

Using distance formula,

 \rm =  \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

  • \rm x_1 \: and \: y_1 denotes the coordinates of P
  • \rm x_2 \: and \: y_2 denotes the coordinates of Q

Substituting the given coordinates,

{ =  \rm  \sqrt{ { \big[(a - b) - (a + b) \big]}^{2} +  { \big[(a + b) - (a - b) \big]}^{2}  } }

{ =  \rm  \sqrt{ { \big[a - b - a  -  b \big]}^{2} +  { \big[a + b - a + b \big]}^{2}  } }

{ =  \rm  \sqrt{ { \big[ - 2b \big]}^{2} +  { \big[2b\big]}^{2}  } }

 \rm =  \sqrt{4 {b}^{2}  +  {4b}^{2} }

 \rm =  \sqrt{ {8b}^{2} }

 \rm =  2b\sqrt{ {2}}

Hence, the distance between P and Q is 2b2 units.

__________________________________________

Formula used,

 \rm \bullet \:\: Distance =  \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

  • \rm x_1 \: and \: y_1 denotes the coordinates of first point.
  • \rm x_2 \: and \: y_2 denotes the coordinates of second point.

Anonymous: Amazing!
TheBrainliestUser: Perfect!
Answered by Anonymous
20

Given :

  • P(a+b, a-b)
  • Q(a-b, a+b)

To find :

  • Distance of the point.

Distance formula

  • \sf\sqrt{ {(x_2 - x_1)}^{2} + {(y_2 - y_1)}^{2}}

Solution :

 \sf \: PQ =  \sqrt{((a - b) - (a + b)) {}^{2} +  ((a - b) - (a - b)) {}^{2}  }

= 4b² + 4b²

 \sf =  \sqrt{8b {}^{2} }

 \red{ \sf \: =  2b \:  \sqrt{2}  \: units}


Anonymous: Awesome!
TheBrainliestUser: Fantastic!
anindyaadhikari13: Well done.
Similar questions