Math, asked by komalbauriya, 4 days ago

find the distance between the points (6,4) and (8,9)​

Answers

Answered by ImperialGladiator
45

Answer:

 {\rm\sqrt{29} \: units  }

Explanation:

Let the given points,

  • A(6, 4)
  • B(8, 9)

Using distance formula :

 \rm \longrightarrow \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

  • \rm x_1 \: and \: y_1 denotes the coordinates of point A i.e., 6 and 8 respectively.
  • Similarly, \rm x_2 \: and \: y_2 is 4 and 9 respectively.

Substituting the given coordinates :

 \rm \longrightarrow \sqrt{ {(8 - 6)}^{2} +  {(9 - 4)}^{2}  }

 \rm \longrightarrow \sqrt{ {(2)}^{2} +  {(5)}^{2}  }

 \rm \longrightarrow \sqrt{4 +  25  }

 \rm \longrightarrow \sqrt{29  }

 \underline{ \rm \therefore \: Distance \: between \: A \: and \: B \: is \:   \sqrt{29} \: units  }

_____________________

Note:

Distance formula,

  •  \rm \longrightarrow \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

  • \rm x_1 \: and \: y_1 denotes the coordinates of the first point.
  • \rm x_2 \: and \: y_2 denotes the coordinates of the second point.
Answered by Anonymous
5

Aɴsᴡᴇʀ:

 {\rm\sqrt{29} \: units  }

Exᴘʟᴀɴᴀᴛɪᴏɴ:

Let the given points,

A(6, 4)

B(8, 9)

Using distance formula :

 \rm \longrightarrow \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

\rm x_1 \: and \: y_1 denotes the coordinates of point A i.e., 6 and 8 respectively.

Similarly, \rm x_2 \: and \: y_2 is 4 and 9 respectively.

Substituting the given coordinates :

 \rm \longrightarrow \sqrt{ {(8 - 6)}^{2} +  {(9 - 4)}^{2}  }

 \rm \longrightarrow \sqrt{ {(2)}^{2} +  {(5)}^{2}  }

 \rm \longrightarrow \sqrt{4 +  25  }

 \rm \longrightarrow \sqrt{29  }

 \underline{ \rm \therefore \: Distance \: between \: A \: and \: B \: is \:   \sqrt{29} \: units  }

_____________________

Note:

Distance formula,

 \rm \longrightarrow \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2 - y_1)}^{2}  }

Where,

\rm x_1 \: and \: y_1 denotes the coordinates of the first point.

\rm x_2 \: and \: y_2 denotes the coordinates of the second point.

✎Hᴏᴘᴇ ᴜ ɢᴏᴛ ɪᴛ!

Similar questions