Math, asked by NithinBalaji143, 3 months ago

Find the distance between the points A (2, -3) and B (-2.0)​

Answers

Answered by Anonymous
10

Given :-

  • Coordinates of A = ( 2 , - 3 )
  • Coordinates of B = ( - 2 , 0 )

--------------------------------------------------------------

To Find :-

  • Distance between the points A and B

--------------------------------------------------------------

Solution :-

By using distance formula

\red \bigstar \: \boxed{ \green{\bf Distance =  \sqrt{ {(x_2 - x_1)}^{2}  +  {(y_2 - y_1)}^{2} }  }} \\

Here

  • x₁ = 2
  • x₂ = - 2
  • y₁ = - 3
  • y₂ = 0

Substitute values in formula

\longmapsto \sf Distance =  \sqrt{ {( - 2 - 2)}^{2}  +  {(0 + 3)}^{2} } \\

\longmapsto \sf Distance =  \sqrt{ {( - 4)}^{2}  +  {(3)}^{2} } \\

\longmapsto \sf Distance = \sqrt{16 + 9} \\

\longmapsto \sf Distance =  \sqrt{25}

\longmapsto \boxed{ \sf Distance = 5 \: unit} \\

Answered by hemanji2007
3

Topic:-

Co-Ordinate System

Question:-

Find the distance between the points A (2, -3) and B (-2,0)

Solution:-

A=(2,-3)

B=(-2,0)

Have To Find the distance between A and B

Let,

x1= 2 , y1 = -3

x2= -2 , y2= 0

So By applying distance formula we get

 \sqrt{(x1  -  x2 {)}^{2} + (y1 - y2 {)}^{2}  }

 =  \sqrt{( 2 - ( - 2) {)}^{2}  + ( - 3 - 0 {)}^{2} }

 =  \sqrt{(2 + 2 {)}^{2} + ( - 3 {)}^{2}  }

 =  \sqrt{ {4}^{2} + 9 }

 =  \sqrt{16 + 9}

 =  \sqrt{25}

 = 5

Answer:-

The distance between A and B = 5

Formula Used:-

 \sqrt{(x1 - x2  {)}^{2} + (y1 - y2 {)}^{2}   }

More Information:-

Distance formula:-

\bf\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

Centroid formula:-

\bf\dfrac{x_1+x_2+x_3}{3},\bf\dfrac{y_1+y_2+y_3}{3}

Section formula Internal division

\bf\dfrac{mx_2+nx_1}{m+n}, \bf\dfrac{my_2+ny_1}{m+n}

Section formula External division

\bf\dfrac{mx_2-nx_1}{m-n}, \bf\dfrac{my_2-ny_1}{m-n}

Similar questions