Biology, asked by Pandaaastha9378, 10 months ago

Find the distance between the points a (4,10) b(7,-6)

Answers

Answered by amitkumar44481
16

AnsWer :

16.49 units.

SolutioN :

Let's,

  • Point be,
  • A( 4 , 10 )
  • B( 7 , - 6 )

Now, We know Distance Formula.

 \tt \dagger \:  \:  \:  \:  \:  D_{istance} =  \sqrt{ {(x_2-x_1)}^{2}+ {(y_2-y_1)}^{2}  }

Now, Let Find distance between point A and B.

We have,

  • x1 = 4.
  • x2 = 7.
  • y1 = 10.
  • y2 = - 6.

 \tt \dagger \:  \:  \:  \:  \:  AB =  \sqrt{{(7 - 4)}^{2}  + {( - 6 - 10) }^{2} }

 \tt \dagger \:  \:  \:  \:  \:  AB =  \sqrt{{(4)}^{2}  + {(  - 16 )}^{2} }

 \tt \dagger \:  \:  \:  \:  \:  AB =  \sqrt{{16 }   + {256}}

 \tt \dagger \:  \:  \:  \:  \:  AB =  \sqrt{272}

 \tt \dagger \:  \:  \:  \:  \:  AB =  16.49 \: units.

Therefore, the distance between point A and B is 16.49 Units.

MorE InformatioN :

Distance Formula :

 \tt \dagger \:  \:  \:  \:  \:  D_{istance} =  \sqrt{ {(x_2-x_1)}^{2}+ {(y_2-y_1)}^{2}  }

Mid-point Formula :

 \tt \dagger \:  \:  \:  \:  \:  Mid-point =\Bigg[  \dfrac{x_1 + x_2}{2},  \dfrac{y_1 + y_2}{2} \Bigg]

Similar questions