Math, asked by awaizkhan9241435161, 2 months ago

find the distance between the points p (2,3) and Q(4,1) using distance formula​

Answers

Answered by happeninghomo
13

Answer:

2.828 units

Step-by-step explanation:

pq =  \sqrt{ {(4 - 2)}^{2} +  {(1 - 3)}^{2}  }

pq =  \sqrt{ {(2)}^{2} +  {( - 2)}^{2}  }

pq =  \sqrt{ 4+  4  }

pq =  \sqrt{8}

And,

 \sqrt{8}  = 2.828

Answered by Anonymous
26

Given :-

  • Coordinates of P = ( 2 , 3 )
  • Coordinates of Q = ( 4 , 1 )

To Find :-

  • Area of the triangle ABC

✪ Solution :-

\red\bigstar\: \boxed{\bf \green{Distance = \sqrt{ {(x_2 - x_1)}^{2} +  {(y_2}^{2} -y_1)} }} \\

Here

  • x₁ = 2
  • x₂ = 4
  • y₁ = 3
  • y₂ = 1

Substitute values in formula

\longmapsto \sf Distance =  \sqrt{ {(4 - 2)}^{2} + {(1 - 3)}^{2} } \\

\longmapsto \sf Distance =  \sqrt{ {(2)}^{2} + {( - 2)}^{2} } \\

\longmapsto \sf Distance =  \sqrt{4 + 4 } \\

\longmapsto \sf Distance =  \sqrt{8} \\

\longmapsto \sf Distance =2 \sqrt{2}  \: unit \\

Similar questions