Math, asked by rakeshreddy18082007s, 9 months ago

Find the distance between two parallel lines 5x – 3y-4 = 0, 10x - 6y - 9 = 0.​

Answers

Answered by BrainlyPopularman
35

{ \bold{ \boxed{ \boxed{ \mathbb{  \huge\red{ ANSWER}}}}}}

{ \bold{ \underline{Given \:  \: lines} :  - }} \\  \\ { \bold{ \blue{ \implies \: \: 5x - 3y - 4 = 0 \:  \:  \:  \:  \: .....(1) }}} \\  \\ { \bold{ \blue{ \implies \:  \:  \: 10x - 6y - 9 = 0 \:  \:  \:  \:  \:  \: }}} \\  \\ { \bold{ \blue{ \implies \:  \:  \: 5x - 3y -  \frac{9}{2}  = 0 \:  \:  \:  \:  \: .....(2)}}} \\  \\ { \bold{ \underline{ TO \:  \:  FIND  } :  -  }} \\   { \bold{ \blue{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: distance \:  \: beetween \:  \: lines }}} \\  \\ \\  \\  { \bold{ \huge{ \mathbb{ \red{ \underline{SOLUTION}: - } }}}}  \\  \\  \\ { \bold{ \blue{ \:  \:  \:  \: . \:  \: formula - }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \: { \boxed{distance = |  \frac{ c_{1} -  c_{2} }{ \sqrt{ {a}^{2}  +  {b}^{2} }  }  |  }}}}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \: . \:  \: here \:  \: a = 5 \: ,\: b =  - 3 \: ,\:  c_{1} =  - 4 \:  \: and \:  \:  c_{2} =  -  \frac{9}{2}  }}} \\   \\ { \bold{ \blue{ \:  \:   \:  \: \:  \: . \:  \: distance =  \frac{  | - 4  +  \frac{9}{2} |  }{ \sqrt{ {5}^{2}  +  {( - 3)}^{2} } } }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{ \frac{1}{2} }{ \sqrt{25 + 9} }  }}}   \\ \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2 \sqrt{34} }  }}}

Similar questions