Math, asked by callofgamer216, 1 year ago

Find the distance between two skew lines x-1/2 = y-3/2 = z and x-2/4 = y+1/1 = z-4/8 ​

Answers

Answered by stefangonzalez246
0

The distance between the two skew lines (x-1) ÷ (2) =(y-3) ÷ (2)= z

and (x-2) ÷ (4)= (y+1) ÷ (1) = (z-4) ÷ (8)  is 2.4189

Step-by-step explanation:

 The lines in three dimensional form which are not parallel and do not cross are called Skew lines. Skew lines are in different planes.

Given Data

two skew lines are (x-1) ÷ (2) =(y-3) ÷ (2)= z

and (x-2) ÷ (4)= (y+1) ÷ (1) = (z-4) ÷ (8)  

The given line equation is in the form of

(x-x_1) ÷ (a_1 ) = (y-y_1) ÷ (b_1)= (z- z_1) ÷ ( c_1 )

and (x-x_2) ÷ (a_2) = (y-y_2) ÷ (b_2 ) = (z-z_2) ÷ (c_2)

Where x_1=1,  x_2 =2, y_1 = 3, y_2 =-1, z_1 = 0, z_2 = 4, a_1 = 2, a_2  = 4,  b_1 = 2,  b_2 = 1, c_1 = 0,  c_2 = 8

Formula to find the distance between two lines is,

=\left|\begin{array}{ccc}{x_{2}-x_{1}} & {y_{2}-y_{1}} & {z_{2}-z_{1}} \\{a_{1}} & {b_{1}} & {c_{1}} \\{a_{2}} & {b_{2}} & {c_{2}}\end{array}\right|

÷ √ ((b_1 c_1 -b_2 c_2)² + (c_1 a_2 - c_2a_1)² + ( a_1b_2 - a_2 b_2)²)

Substitute the values of x,y,z,a,b and c in their respective places

 =\left|\begin{array}{ccc}{x_{2}-x_{1}} & {y_{2}-y_{1}} & {z_{2}-z_{1}} \\{a_{1}} & {b_{1}} & {c_{1}} \\{a_{2}} & {b_{2}} & {c_{2}}\end{array}\right| \div \sqrt{16-0)^{2}+(16-0)^{2}+(2-8)^{2}}

\begin{aligned}&=\left|\begin{array}{ccc}{2-1} & {-1-3} & {4-0} \\{2} & {2} & {0} \\{4} & {1} & {8}\end{array}\right| \div \sqrt{(256+(256)+(-6)^{2}\right})\\&=\left|\begin{array}{ccc}{1} & {-4} & {4} \\{2} & {2} & {0} \\{4} & {1} & {8}\end{array}\right| \div \sqrt{(256+256+24)}\end{aligned}

=  (1(16-0)+4(16-0)+4(2-8)) ÷√((16-0)² +(16 - 0)² + (2-8)²)

=  (16+ 64-24) ÷ √(256 + (256) + (-6)²)

= ( 56) ÷ √(256 + 256 + 24)

=  (56) ÷√536

= (56) ÷ 23.151

= 2.4189

2.4189 is the distance between the two skew lines (x-1) ÷ (2) =(y-3) ÷ (2)= z

and (x-2) ÷ (4)= (y+1) ÷ (1) = (z-4) ÷ (8)  

To learn more ...

1. https://brainly.in/question/33165

Similar questions