Math, asked by markangel0814979, 7 months ago

Find the distance of a chord of length 16cm from the centre of a circle of radius 12cm. Answer with screenshot of the working note

Answers

Answered by Anonymous
12

αиѕωєя

  • The length of the chord = 16cm

  • The radius of the circle = 10cm

  • When a perpendicular is drawn on the chord such that the chord is bisecting into two. Then the length of the chord will be halved, that is it becomes 8cm.

Using the Pythagorean theorem,

OA^2 = OC^2 + AC^2 \\ </h3><h3>10^2 = OC^2 + 8^2 \\ </h3><h3>100 = OC^2 + 64 \\ </h3><h3>OC^2 = 36 \\ </h3><h3>OC = 6cm

  • Therefore, the distance of the chord from the centre of the circle is 6cm.

hope \: its \: help \: u

Answered by Anonymous
12

ANSWER

______________

The length of the chord = 16cm

The radius of the circle = 10cm

When a perpendicular is drawn on the chord such that the chord is bisecting into two. Then the length of the chord will be halved, that is it becomes 8cm.

Using the Pythagorean theorem,

[ OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2

\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 </u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 </u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC </u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64OC </u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64OC 2</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64OC 2 =36</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64OC 2 =36OC=6cm</u></p><p><u>[tex]\begin{gathered}OA^2 = OC^2 + AC^2 \\ 10^2 = OC^2 + 8^2 \\ 100 = OC^2 + 64 \\ \\  OC^2 = 36 \\ OC = 6cm\end{gathered} OA 2 =OC 2 +AC 2 10 2 =OC 2 +8 2 100=OC 2 +64OC 2 =36OC=6cm

Therefore, the distance of the chord from the centre of the circle is 6cm.

HOPE ITS HELP U

Similar questions