Math, asked by Rajanjais, 1 year ago

find the distance of a point P (x,y) from the origin.

Answers

Answered by topanswers
4

Given:

Point ( x, y )

Origin ( 0, 0 )

To find:

The distance.

Solution:

By formula

Distance between two points = √(( y2 - y1 )^2 + ( x2 - x1 )^2)

Origin ( 0, 0 ) ( x1, y1 )

Point ( x, y ) ( x2, y2 )

Distance = √(( y - 0 )^2 + ( x - 0 )^2

√(x)^2 + (y)^2  

Hence, the distance of a point P(x,y) from the origin is √(x)^2 + (y)^2.

Read more on Brainly.in - https://brainly.in/question/3097707

Answered by stefangonzalez246
1

Solution is \sqrt{x^{2} + y^{2} }.

Given

Distance of a point P(x,y) from the origin = ?

Let the origin be T(0,0).

Distance formula is used to find the distance between two points.

By applying, distance formula distance the two points P(x,y) and T(0,0) can be determined as follows:

                          Distance = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

                          P (x,y)             T(0,0)

                         x_1 = x                y_1 = y

                         x_2 = 0                y_2 = 0

                         Distance = \sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}  }

                                         = \sqrt{(0-x)^{2}+(0- y)^{2}  }

                                         = \sqrt{(-x)^{2}+(-y)^{2}  }

                         Distance = \sqrt{x^{2} + y^{2} }.

To learn more...        

1. brainly.in/question/3097707      

2. brainly.in/question/3095404                        

Similar questions