Math, asked by krishmalik23, 7 months ago

find the distance of point - 1 and - 6 from origin​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
7

Answer

  • We are given a point from the origin
  • A(-1,-6)
  • B(0,0)
  • Distance between A & B = ?

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • Here we shall use the distance formula

\displaystyle\sf \bullet \: x_1 = -1 \ \& \ x_2 = 0

\displaystyle\sf \bullet \: y_1 = -6 \ \& \ y_2 = 0

\displaystyle\sf :\implies Distance = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(0-2)^2 + (0-(-6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(0-2)^2 + (0+6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(2)^2 + (6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{4+36}\\\\

\displaystyle\sf :\implies Distance = \sqrt{40}\\\\

\displaystyle\sf :\implies \underline{\boxed{\sf Distance = 6.3 \ units}}

\displaystyle\sf \therefore\:\underline{\textsf{ Distance between the two points is \textbf{6.3 units}}}

Answered by Anonymous
4

Answer

We are given a point from the origin

A(-1,-6)

B(0,0)

Distance between A & B = ?

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

Here we shall use the distance formula

\displaystyle\sf \bullet \: x_1 = -1 \ \& \ x_2 = 0

\displaystyle\sf \bullet \: y_1 = -6 \ \& \ y_2 = 0

\displaystyle\sf :\implies Distance = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(0-2)^2 + (0-(-6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(0-2)^2 + (0+6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{(2)^2 + (6)^2}\\\\

\displaystyle\sf :\implies Distance = \sqrt{4+36}\\\\

\displaystyle\sf :\implies Distance = \sqrt{40}\\\\

\displaystyle\sf :\implies \underline{\boxed{\sf Distance = 6.3 \ units}}

\displaystyle\sf \therefore\:\underline{\textsf{ Distance between the two points is \textbf{6.3 units}}}

Similar questions