Math, asked by gouribiradar1986, 4 months ago

Find the distance of the following point B ( -5 , -5 ) from the origin​

Answers

Answered by Asterinn
5

\sf \large \: Distance \:  between \:  two \:  points \:  (x_1 , y_1)  \: and \: ( x_2 , y_2)  :  \\  \\ \rm \large\longrightarrow \sqrt{{ {(x_2 - x_1)}^{2} + (y_2 - y_1)}^{2} }

We have to find out the distance between point B ( -5 , -5 ) and the origin.

coordinates of origin :- (0,0)

\rm \: Distance \:  between \:  two \:  points \:  (-5,-5)  \: and \: ( 0 ,  0)  \\  \\ \rm \large\longrightarrow \sqrt{{ {(0 + 5)}^{2} + (0 + 5)}^{2} } \\   \\ \\ \rm \large\longrightarrow \sqrt{{ {(5)}^{2} + ( 5 )}^{2} }\\   \\ \\ \rm \large\longrightarrow \sqrt{{ { 25}+ 25   } }\\   \\ \\ \rm \large\longrightarrow \sqrt{{50} }  \\  \\ \\  \rm \: Distance \:  between \:  two \:  points \:  (-5,-5)  \: and \: ( 0 ,  0)   =   \sqrt{50}  \: units

Answer : √(50) unit

Additional Information:-

\tt \: Equation  \: of  \: line \:  passing \:  through  \: points  \: (x_1 , y_1) \:  and \:  (x_2 , y_2) :

\tt \longrightarrow y -  y_1 = x-x_1\bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg )

\tt \rightarrow  \: here \: \bigg(  \dfrac{y_2-y_1}{ x_2-x_1}   \bigg ) is \: slope \: of \: line

Similar questions