Math, asked by sakshishinde537, 10 months ago

find the distance of the origin from the line 7x+24y-50=0​

Answers

Answered by MaheswariS
10

\textbf{Concept used:}

\text{The perpendicular distance of the point}

\text{$(x_1,y_1)$ from the line ax+by+c=0 is}

\displaystyle\bf|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}|

\text{Now,}

\text{The perpendicular distance of the point}

\text{(0,0) from the line 7x+24y-50=0 is}

\displaystyle\bf|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}|

=\displaystyle|\frac{7x_1+24y_1-50}{\sqrt{7^2+24^2}}|

=\displaystyle|\frac{7(0)+24(0)-50}{\sqrt{49+576}}|

=\displaystyle|\frac{-50}{\sqrt{625}}|

=\displaystyle|\frac{-50}{25}|

=\displaystyle|-2|

=2\;\text{units}

\therefore\textbf{The distance of the (0,0) from the line 7x+24y-50=0 is 2 units}

Similar questions