Find the distance of the point 2,12,5 from the point of intersection of line r
Answers
Answered by
0
Equation of the given line is
r→=2i^−4j^+2k^+λ(3i^+4j^+2k^)r→=2i^−4j^+2k^+λ(3i^+4j^+2k^) -----------(1)
Given equation of the plane is
r→=(i^−2j^+k^)=0r→=(i^−2j^+k^)=0--------(2)
Substituting the value of r→r→ in eqn 2 we get
(2i^−4j^+2k^)+λ(3i^+4j^+2k^)=(i^−2j^+k^)=0(2i^−4j^+2k^)+λ(3i^+4j^+2k^)=(i^−2j^+k^)=0
⇒[(2+3λ)i^+(4λ−4)j^+(2+2λ)k^].[i^−2j^+k^]=0⇒[(2+3λ)i^+(4λ−4)j^+(2+2λ)k^].[i^−2j^+k^]=0
⇒(2+3λ)(1)+(4λ−4)(−2)+(2+2λ)(1)=0⇒(2+3λ)(1)+(4λ−4)(−2)+(2+2λ)(1)=0
2+3λ−8λ+8+2+2λ=02+3λ−8λ+8+2+2λ=0Hence the equation of the line is
r→=(2i^−4j^+2k^)+4(3i^+4j^+2k^)r→=(2i^−4j^+2k^)+4(3i^+4j^+2k^)
(i.e.,) r→=2i^−4j^+2k^+12i^+16j^+8k^r→=2i^−4j^+2k^+12i^+16j^+8k^
=14i^+18k^+10k^=14i^+18k^+10k^
The point of intersection of the given line and the plane is given by the co-ordinate
(14, 12, 10), the given point is ( 2, 12, 5)
hence the distance between the point is
d=(14−2)2+(12−12)2+(10−5)2−−−−−−−−−−−−−−−−−−√d=(14−2)2+(12−12)2+(10−5)2
=122+0+52−−−−−−−−−−√122+0+52
=144+25−−−−−−−√144+25
=144+25−−−−−−−√144+25
=169−−−√169
=13=13
hence the distance is 13 units
r→=2i^−4j^+2k^+λ(3i^+4j^+2k^)r→=2i^−4j^+2k^+λ(3i^+4j^+2k^) -----------(1)
Given equation of the plane is
r→=(i^−2j^+k^)=0r→=(i^−2j^+k^)=0--------(2)
Substituting the value of r→r→ in eqn 2 we get
(2i^−4j^+2k^)+λ(3i^+4j^+2k^)=(i^−2j^+k^)=0(2i^−4j^+2k^)+λ(3i^+4j^+2k^)=(i^−2j^+k^)=0
⇒[(2+3λ)i^+(4λ−4)j^+(2+2λ)k^].[i^−2j^+k^]=0⇒[(2+3λ)i^+(4λ−4)j^+(2+2λ)k^].[i^−2j^+k^]=0
⇒(2+3λ)(1)+(4λ−4)(−2)+(2+2λ)(1)=0⇒(2+3λ)(1)+(4λ−4)(−2)+(2+2λ)(1)=0
2+3λ−8λ+8+2+2λ=02+3λ−8λ+8+2+2λ=0Hence the equation of the line is
r→=(2i^−4j^+2k^)+4(3i^+4j^+2k^)r→=(2i^−4j^+2k^)+4(3i^+4j^+2k^)
(i.e.,) r→=2i^−4j^+2k^+12i^+16j^+8k^r→=2i^−4j^+2k^+12i^+16j^+8k^
=14i^+18k^+10k^=14i^+18k^+10k^
The point of intersection of the given line and the plane is given by the co-ordinate
(14, 12, 10), the given point is ( 2, 12, 5)
hence the distance between the point is
d=(14−2)2+(12−12)2+(10−5)2−−−−−−−−−−−−−−−−−−√d=(14−2)2+(12−12)2+(10−5)2
=122+0+52−−−−−−−−−−√122+0+52
=144+25−−−−−−−√144+25
=144+25−−−−−−−√144+25
=169−−−√169
=13=13
hence the distance is 13 units
Similar questions