Math, asked by Dikambaran, 2 months ago

Find the distance of the point of intersection of the lines 2x − 3y + 5 = 0 and 3x + 4y = 0 from the line 5x − 2y = 0.

Answers

Answered by rkcomp31
2

GIVEN:

Equations of two straight lines 2x − 3y + 5 = 0 and 3x + 4y = 0

To find :

The distance of the point of intersection of these lines  from the third line given: 5x − 2y = 0.

The given lines are :

2x-3y=-5

3x+4y=0

Here

D=\begin{vmatrix} 2 & -3\\ 3 & 4\end{vmatrix} = 8+9=17

D_x=\begin{vmatrix} -5 & -3\\0 & 4\end{vmatrix} = -20-0=-20

D_y=\begin{vmatrix} 2 & -5\\ 3 & 0\end{vmatrix} = 0-(-15)=-15

Thus

x =\frac{D_x}{D}=\frac{-20}{17}\\\\and\\\\y=\frac{D_y}{D}=\frac{-15}{17}

So the point of intersection is (\frac{-20}{17} , \frac{15}{17} )

Now we know that the distance of a point (p,q)

from line ax+by+c=0 is given by

d=\frac{pa+qb+c} { \sqrt{a^2+b^2}}

Putting all the value we get

d =\frac{5 \times \frac {-20}{17}- 2\times \frac{15}{17}}{\sqrt{5^{2}+2^2 }}\\\\\\

= - \frac{ 130}{17\sqrt{29} }\\\\

Answer:

Thus the distance of line 5x-2y = 0 from intersection point is :

d=  \frac{ 130}{17\sqrt{29} } \, unit

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

Let us first find the point of intersection of the lines

 \sf \: 2x - 3y + 5 = 0 -  -  - (1)

and

 \sf \: 3x + 4y = 0 -  -  - (2)

Now, using method of eliminations,

Multiply (1) by 3 and (2) by 2, and subtract, we get

\rm :\implies\:6x - 9y + 15 - 6x - 8y = 0

\rm :\implies\: - 17y =  - 15

\rm :\implies\: \boxed{ \pink{ \bf \: y \:  =  \tt \: \dfrac{15}{17} }}

On substituting the value of y in equation (1), we get

\rm :\implies\:3x + 4 \times \dfrac{15}{17}  = 0

\rm :\implies\:3x =  - \dfrac{60}{17}

\rm :\implies\: \boxed{ \pink{ \bf \: x \:  =  \tt \:  - \dfrac{20}{17} }}

\rm :\implies\: \boxed{ \pink{ \bf \: Hence, \: the \: point \: of \: intersectio \: is ( - \dfrac{20}{17}  , \dfrac{15}{17} ) \:   }}

Now,

Let us consider a line ax + by + c = 0 and let (p, q) be any point in the plane, then distance (d) between line and point is given by

\rm :\implies\: \boxed{ \green{ \bf \:  d\:  =  \tt \: \dfrac{ |ap \:  +  \: bq \:  +  \: c| }{ \sqrt{ {a}^{2}  +  {b}^{2} } } }}

So, now

Distance of the line 5x - 2y = 0 from the point of intersection is given by

\rm :\implies\:d = \dfrac{ |5 \times \dfrac{( - 20)}{17}  - 2 \times \dfrac{15}{17} | }{ \sqrt{ {5}^{2}  +  {2}^{2} } }

\rm :\implies\:d \:  =  \: \dfrac{ | - \dfrac{100}{17}  - \dfrac{30}{17} | }{ \sqrt{25 + 4} }

\rm :\implies\: \boxed{ \pink{ \bf \: d \:  =  \tt \:\dfrac{130}{17 \sqrt{29} \:  }  \: units }}

Similar questions