Math, asked by AAYUSHYADAV100, 1 year ago

find the distance of the point p(-7,-3) from the origin ​

Answers

Answered by ItSdHrUvSiNgH
8

Step-by-step explanation:

\huge\underline{\underline{\ Question}}

_________________________________________

Distance of point (-7, -3) form origin (0,0)

_________________________________________

\huge\underline{\underline{\ Answer}}

 \large \: formula =  >

distance =  \sqrt{ {(x2 - x1)}^{2}  +  {(y2 - y1)}^{2} }

Let...

(-7,-3) = (x1, y1)

(0,0) = (x2, y2)

 \implies d =  \sqrt{ {( - 7 - 0)}^{2}  +  {( - 3 - 0)}^{2} }  \\  \implies d =  \sqrt{ {( - 7)}^{2}  +  {( - 3)}^{2} }  \\  \implies d =  \sqrt{49 + 9}  \\  \implies d =  \sqrt{58}

So, distance of (-7,-3) from origin is √58.

Answered by jeyasuryaprakash13
2

Answer:

58units

Step-by-step explanation:

Distance of point (-7, -3) form origin (0,0)

_________________________________________

\huge\underline{\underline{\ Answer}}

Answer

\large \: formula = >formula=>

distance = \sqrt{ {(x2 - x1)}^{2} + {(y2 - y1)}^{2} }distance=

(x2−x1)

2

+(y2−y1)

2

Let...

(-7,-3) = (x1, y1)

(0,0) = (x2, y2)

\begin{gathered}\implies d = \sqrt{ {( - 7 - 0)}^{2} + {( - 3 - 0)}^{2} } \\ \implies d = \sqrt{ {( - 7)}^{2} + {( - 3)}^{2} } \\ \implies d = \sqrt{49 + 9} \\ \implies d = \sqrt{58}\end{gathered}

⟹d=

(−7−0)

2

+(−3−0)

2

⟹d=

(−7)

2

+(−3)

2

⟹d=

49+9

⟹d=

58

Similar questions