Find the domain and range of √(9x-x²)
Answers
EXPLANATION.
Domain and range of fυnction.
⇒ √(9x - x²).
As we know that,
⇒ 9x - x² ≥ 0.
⇒ x(9 - x) ≥ 0.
⇒ x(x - 9) ≤ 0.
First we find the zeroes, we get.
⇒ x = 0 and x = 9.
Put this point on wavy curve method, we get.
⇒ x ∈ [0,9].
Domain of the fυnction,
⇒ √9x - x² = x ∈ [0,9].
For of the equation,
Let the fυnction = y.
Equation is written as,
⇒ y = √9x - x².
⇒ y² = 9x - x².
⇒ y² - 9x + x² = 0.
⇒ x² - 9x + y² = 0.
Make a quadratic equation on x.
Quadratic equation must be : D ≥ 0.
⇒ b² - 4ac ≥ 0.
⇒ (-9)² - 4(1)(y²) ≥ 0.
⇒ 81 - 4y² ≥ 0.
⇒ 4y² - 81 ≤ 0.
As we know that,
Formula of :
⇒ (x² - y²) = (x + y)(x - y).
⇒ (2y)² - (9)² = (2y + 9)(2y - 9).
⇒ (2y + 9)(2y - 9) ≤ 0.
Find zeroes of the equation, we get.
⇒ y = -9/2 and y = 9/2.
Put this zeroes on wavy curve method, we get.
⇒ y ∈ [-9/2, 9/2]. = (1).
As we also know that,
Equation = √9x - x² is defined on interval of [0,∞). = (2).
Taking intersection on both equation (1) & (2), we get.
⇒ y ∈ [-9/2, 9/2] ∩ [0,∞).
⇒ y ∈ [0,9/2].
Range of the equation,
⇒ √9x - x² = y ∈ [0,9/2].
Answer:
Domain:
» f = √(9x - x²)
The function will be defined for 9x - x² ≥ 0
i.e. x (9 - x) ≥ 0
i.e. x ≤ 9 and x ≥ 0
Therefore, the domain is [0, 9]
Range:
y = √(9x - x²)
y = 0, is the least value possible, and max value will be possible for max value of 9x - x²
i.e. max value of x (9 - x) where x € [0, 9]
» 4.5 (9 - 4.5) = 20.25
Therefore, max range of y = √(20.25) = 4.5 = 9/2
Hence, range is [0, 9/2]