Math, asked by singhgursewak46310, 8 months ago

find the domain and range of a function of f x equal to under root 9 - x square Lesson name​

Answers

Answered by pulakmath007
25

SOLUTION :

TO DETERMINE

The domain and range of the function

 \sf{f(x) =  \sqrt{9 -  {x}^{2} } }

EVALUATION

Here the given function is

 \sf{f(x) =  \sqrt{9 -  {x}^{2} } }

DOMAIN :

Here f(x) is well defined when

 \sf{9 -  {x}^{2}   \geqslant 0\: }

  \implies\sf{ -  {x}^{2}   \geqslant  - 9\: }

  \implies\sf{ {x}^{2}   \leqslant  9\: }

  \implies\sf{  - 3 \leqslant x \leqslant 3\: }

Hence the required Domain is

 =  \sf{ \{ \: x \in \mathbb{ R} \:  :   \:  - 3 \leqslant x \leqslant 3 \:  \} }

 =  \sf{ [ - 3,3 \: ] }

RANGE :

Since for every value of x in the domain set we can get a value of f(x)

Hence the range is the set of Real numbers

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

log₁₀(10.01),Find approximate value

https://brainly.in/question/5598224

Similar questions