Math, asked by aburewatkar6825, 1 year ago

Find the domain and range of f(x)= 1+ cos2x .

Answers

Answered by JinKazama1
4
Final Answer :
Range :
 0 \leqslant f(x) \leqslant 2
Domain:
 0 \leqslant x \leqslant  \frac{\pi}{2}
Here, we are bounding our trigonometric function up-to priciplal values only.


So,
We know that

 - 1 \leqslant  \cos(x)  \leqslant 1 \\  =  > - 1  \leqslant  \cos(2x)  \leqslant 1

So,
f(x) = 1 + cos(2x)
Then,
1 - 1 \leqslant f(x) \leqslant 1 + 1 \\  =  > 0 \leqslant f(x) \leqslant 2

Since, we are bounding our domain up-to principal values only.
0 \leqslant 2x \leqslant \pi \\  =  > 0 \leqslant x \leqslant  \frac{\pi}{2}
Similar questions