Math, asked by diamond20635, 5 months ago

find the domain and range of f(x)=2√x+4​

Answers

Answered by maniraj69
1

Answer:

explanation:

The denominator of f(x) cannot be zero as this would make f(x) undefined. Equating the denominator to zero and solving gives the value that x cannot be.

solve

x

+

4

=

0

x

=

4

excluded value

domain is

x

R

,

x

4

(

,

4

)

(

4

,

)

in interval notation

let

y

=

x

2

x

+

4

to find the range, rearrange making

x

the subject

y

(

x

+

4

)

=

x

2

x

y

+

4

y

=

x

2

x

y

x

=

2

4

y

x

(

y

1

)

=

2

4

y

x

=

2

4

y

y

1

solve

y

1

=

0

y

=

1

excluded value

range is

y

R

,

y

1

or

(

,

1

)

(

1

,

)

graph{(x-2)/(x+4) [-10, 10, -5, 5]}

Similar questions