find the domain and range of f(x)=2√x+4
Answers
Answered by
1
Answer:
explanation:
The denominator of f(x) cannot be zero as this would make f(x) undefined. Equating the denominator to zero and solving gives the value that x cannot be.
solve
x
+
4
=
0
⇒
x
=
−
4
←
excluded value
domain is
x
∈
R
,
x
≠
−
4
(
−
∞
,
−
4
)
∪
(
−
4
,
∞
)
←
in interval notation
let
y
=
x
−
2
x
+
4
to find the range, rearrange making
x
the subject
y
(
x
+
4
)
=
x
−
2
x
y
+
4
y
=
x
−
2
x
y
−
x
=
−
2
−
4
y
x
(
y
−
1
)
=
−
2
−
4
y
x
=
−
2
−
4
y
y
−
1
solve
y
−
1
=
0
⇒
y
=
1
←
excluded value
range is
y
∈
R
,
y
≠
1
or
(
−
∞
,
1
)
∪
(
1
,
∞
)
graph{(x-2)/(x+4) [-10, 10, -5, 5]}
Similar questions