find the domain and range of functions f(x) =xsquare +3x+5 by xsquare - 5x+4
Answers
EXPLANATION.
Domain and Range of the function,
⇒ x² + 3x + 5/x² - 5x + 4.
⇒ f(x) = x² + 3x + 5/x² - 5x + 4.
for domain denominator > 0.
split their domain into middle term split,
⇒ x² - 5x + 4 = 0.
⇒ x² - 4x - x + 4 = 0.
⇒ x ( x - 4 ) -1 ( x - 4 ) = 0.
⇒ ( x - 1 ) ( x - 4 ).
⇒ f(x) = x² + 3x + 5/( x - 1 ) ( x - 4 ) = 0.
⇒ Domain = R - { 1,4}.
To find the Range.
Let the function = y.
f(x) = y.
⇒ x² + 3x + 5/x² - 5x + 4 = y.
⇒ x² + 3x + 5 = y ( x² - 5x + 4 ).
⇒ x² + 3x + 5 = x²y - 5xy + 4y.
⇒ x²y - x² - 5xy - 3x + 4y - 5 = 0.
⇒ x² ( y - 1 ) + x ( -5y - 3 ) + 4y - 5 = 0.
For real roots, D ≥ 0.
⇒ b² - 4ac ≥ 0.
⇒ ( -5Y - 3 )² - 4(y - 1 ) ( 4y - 5 ) ≥ 0.
⇒ 25y² + 9 - 30y - 4 ( 4y² - 5y - 4y + 5 ) ≥ 0.
⇒ 25y² + 9 + 30y - 16y² + 36y - 20 ≥ 0.
⇒ 9y² + 66y - 11 ≥ 0.
to find the value of y = -b ± √b² - 4ac/2a.
⇒ - 66 ± √(66)² - 4(9)(-11) / 18.
⇒ - 11 ± √132/3.
Put it on a wavy curve method,
Range = ( -∞, -11 - √132/3 ] ∪ ( ∞, -11 + √132/3 ]
Given,
In real numbers, the denominator can't be equal to Zero (0).
Hence, (x-4)(x-1) ≠ 0
x ≠ 4 or x ≠ 1
So, the domain of the function will be all real numbers except 4 & 1.
The domain ☞
Hope It Helps You ✌️