Math, asked by megha142004, 9 months ago

find the domain and range of lx+1l

Answers

Answered by shadowsabers03
6

The modulus function |x| is actually defined as,

\longrightarrow |x|=\left\{\begin{array}{rr}x,&x\geq0\\-x,&x\leq0\end{array}\right.

Replacing x by x+1 we get,

\longrightarrow |x+1|=\left\{\begin{array}{rr}x+1,&x+1\geq0\\-(x+1),&x+1\leq0\end{array}\right.

\longrightarrow |x+1|=\left\{\begin{array}{rr}x+1,&x\geq-1\\-x-1,&x\leq-1\end{array}\right.

However, the domain of this function is,

\longrightarrow x\in(-\infty,\ -1]\cup[-1,\ \infty)

\longrightarrow\underline{\underline{x\in\mathbb{R}}}

For x\geq-1,

\longrightarrow x\in[-1,\ \infty)

Adding 1,

\longrightarrow x+1\in[-1+1,\ \infty)

Since |x+1|=x+1 for x\geq-1,

\longrightarrow |x+1|\in[0,\ \infty)\quad\quad\dots(1)

For x\leq-1,

\longrightarrow x\in(-\infty,\ -1]

Multiplying by -1, (note the limit change in interval)

\longrightarrow -x\in[1,\ \infty)

Subtracting 1,

\longrightarrow -x-1\in[1-1,\ \infty)

Since |x+1|=-x-1 for x\leq-1,

\longrightarrow |x+1|\in[0,\ \infty)\quad\quad\dots(2)

From (1) and (2) we get,

\longrightarrow\underline{\underline{|x+1|\in[0,\ \infty)}}

This is the range of the function.

Answered by shashu2004
1

Answer:

answer is [0,∞]

Step-by-step explanation:

mark me brainlest

Similar questions