Math, asked by megha142004, 6 months ago

find the domain and range of x^{2} /1+x^{2}

Answers

Answered by shadowsabers03
9

Given function is,

\longrightarrow f(x)=\dfrac{x^2}{1+x^2}

Here the denominator should not be zero but here the denominator is always positive since x^2 is non - negative.

\displaystyle\longrightarrow x^2\geq0

\displaystyle\longrightarrow 1+x^2\geq1

Thus f(x) can accept all real values of x without any restriction.

Hence the domain is \mathbb{R.}

\displaystyle\longrightarrow\underline{\underline{x\in\mathbb{R}}}

Let,

\longrightarrow y=\dfrac{x^2}{1+x^2}

\longrightarrow y(1+x^2)=x^2

\longrightarrow y+x^2y=x^2

\longrightarrow y+x^2y-x^2=0

\longrightarrow x^2(y-1)+y=0

Now we have a quadratic equation in x where,

  • a=y-1
  • b=0
  • c=y

Solving it,

\longrightarrow x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\longrightarrow x=\dfrac{\pm\sqrt{0^2-4(y-1)y}}{2(y-1)}

\longrightarrow x=\dfrac{\pm\sqrt{-4y(y-1)}}{2(y-1)}

Here the denominator should not be zero.

\longrightarrow 2(y-1)\neq0

Dividing by 2,

\longrightarrow y-1\neq0

Adding 1,

\longrightarrow y\neq1

\Longrightarrow y\in\mathbb{R}-\{1\}\quad\quad\dots(1)

And we know \sqrt x is defined only for x\geq0.

\Longrightarrow -4y(y-1)\geq0

Dividing by -4, (note the sign change)

\longrightarrow y(y-1)\leq0

\Longrightarrow y\in[0,\ 1]\quad\quad\dots(2)

Combining (1) and (2),

\longrightarrow y\in\left[\mathbb{R}-\{1\}\right]\cap[0,\ 1]

\longrightarrow\underline{\underline{y\in[0,\ 1)}}

Or,

\longrightarrow\underline{\underline{f(x)\in[0,\ 1)}}

This is the range of the function.

Similar questions