Math, asked by stefantheboi, 9 months ago

Find the domain and range of y=\sqrt{x^2+6x-27}

Answers

Answered by shadowsabers03
1

Given,

\longrightarrow y=\sqrt{x^2+6x-27}

We know the function f(x)=\sqrt x is defined for x\geq0.

Thus if y has to be defined,

\longrightarrow x^2+6x-27\geq0

\longrightarrow x^2+9x-3x-27\geq0

\longrightarrow x(x+9)-3(x+9)\geq0

\longrightarrow (x+9)(x-3)\geq0

\Longrightarrow\underline{\underline{x\in(-\infty,\ -9]\cup[3,\ \infty)}}

This is the domain.

Now,

\longrightarrow y=\sqrt{x^2+6x-27}

\longrightarrow y^2=x^2+6x-27

\longrightarrow x^2+6x-27-y^2=0

\longrightarrow x^2+6x-(y^2+27)=0

Now we've a quadratic equation in x whose discriminant should be non - negative in order to get real values for x.

\longrightarrow 6^2+4(y^2+27)\geq0

\longrightarrow 36+4y^2+108\geq0

\longrightarrow 4y^2+144\geq0

\longrightarrow y^2+36\geq0

\longrightarrow y^2\geq-36

If the square of a real number is shown to be greater than a negative number, that means the square is always non - negative, since due to the fact that there does not exist any positive real number between zero and a negative number.

Therefore,

\longrightarrow y^2\geq0

\Longrightarrow y\in\mathbb{R}\quad\quad\dots(1)

We know the range of the function f(x)=\sqrt x is that f(x)\in[0,\ \infty).

So, since y=\sqrt{x^2+6x-27},

\longrightarrow y\in[0,\ \infty)\quad\quad\dots(2)

Taking (1)\land(2),

\longrightarrow y\in\mathbb{R}\cap[0,\ \infty)

\longrightarrow\underline{\underline{y\in[0,\ \infty)}}

This is the range.

Similar questions