Math, asked by manijabegum664, 2 months ago

find the domain and range of the following f(x)=1/2x-1​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{2x - 1}

Domain is defined as set of those real values of x, where function is well defined.

So, in order that f(x) is defined,

\rm :\longmapsto\:2x - 1 \:  \ne \: 0

\rm :\longmapsto\:2x  \:  \ne \: 1

\rm :\longmapsto\:x  \:  \ne \:  \dfrac{1}{2}

Hence,

Domain of

\bf :\longmapsto\:f(x) = \dfrac{1}{2x - 1}  \: is \: x \:  \in \: R - \bigg \{\dfrac{1}{2} \bigg \}

To find the range of f(x)

We first substitute y=f(x) and then solve the equation for x, giving something in the form of x=g(y).

Find the domain of g(y), and this will be the range of f(x).

So,

Let assume that

\rm :\longmapsto\:y = \dfrac{1}{2x - 1}

\rm :\longmapsto\:2x - 1 = \dfrac{1}{y}

\rm :\longmapsto\:2x = \dfrac{1}{y} + 1

\rm :\longmapsto\:2x = \dfrac{1 + y}{y}

\rm :\longmapsto\:x = \dfrac{y + 1}{2y}

So, x is defined when

\rm :\longmapsto\:2y \:  \ne \:  0

\rm :\longmapsto\:y \:  \ne \:  0

So,

\bf :\longmapsto\: \: y \:  \in \: R - \bigg \{0 \bigg \}

Hence,

Range of

\bf :\longmapsto\:f(x) = \dfrac{1}{2x - 1}  \: is \: y \:  \in \: R - \bigg \{0\bigg \}

Additional Information :-

Let take some more examples :-

Find the domain of the following functions :-

\bf :\longmapsto\:(1). \:  \: f(x) =  \sqrt{x - 1}

Solution

For f(x) to defined,

\rm :\longmapsto\:x - 1 \geqslant 0

\rm :\longmapsto\:x \geqslant 1

\bf\implies \:x \:  \in \:  [1, \:  \infty  )

\bf :\longmapsto\:(2). \:  \: f(x) =  \sqrt{1 -  {x}^{2} }

For f(x) to be defined,

\rm :\longmapsto\:1 -  {x}^{2} \geqslant 0

\rm :\longmapsto\: - ({x}^{2} - 1)\geqslant 0

\rm :\longmapsto\: {x}^{2} - 1\leqslant 0

\rm :\longmapsto\: (x - 1)(x + 1)\leqslant 0

\rm :\longmapsto\: - 1 \leqslant x \leqslant 1

\bf\implies \:x \:  \in \: [ - 1, \: 1]

\bf :\longmapsto\:(3). \: f(x) = \dfrac{1}{ \sqrt{x - 1}}

For f(x) to be defined,

\rm :\longmapsto\:x - 1 > 0

\rm :\longmapsto\:x  > 1

\bf\implies \:x \:  \in \:  (1, \:  \infty  )

Similar questions