Math, asked by yashsehgal251103, 1 month ago

Find the domain and range of the following functions

Attachments:

Answers

Answered by shadowsabers03
9

(i) \small\text{$f(x)=\cos[\ln(5x^2-8x+7)]$}

\small\text{$\Longrightarrow[\ln(5x^2-8x+7)]\in\mathbb{R\cap Z}$}

\small\text{$\longrightarrow[\ln(5x^2-8x+7)]\in\mathbb{Z}$}

\small\text{$\Longrightarrow\ln(5x^2-8x+7)\in\mathbb{R}$}

\small\text{$\Longrightarrow5x^2-8x+7\in(0,\ \infty)$}

\small\text{$\longrightarrow5\left(x-\dfrac{4}{5}\right)^2+\dfrac{19}{5}\in(0,\ \infty)$}

\small\text{$\longrightarrow\left(x-\dfrac{4}{5}\right)^2\in\bigg(-\dfrac{19}{25},\ \infty\bigg)\cap[0,\ \infty)$}

\small\text{$\longrightarrow\left(x-\dfrac{4}{5}\right)^2\in[0,\ \infty)$}

\small\text{$\Longrightarrow\underline{\underline{x\in\mathbb{R}}}$}

This is the domain.

\small\text{$\longrightarrow x\in\mathbb{R}$}

\small\text{$\longrightarrow5\left(x-\dfrac{4}{5}\right)^2+\dfrac{19}{5}=5x^2-8x+7\in\left[\dfrac{19}{5},\ \infty\right)$}

\small\text{$\longrightarrow\ln(5x^2-8x+7)\in\left[\ln\left(\dfrac{19}{5}\right),\ \infty\right)$}

\small\text{$\longrightarrow[\ln(5x^2-8x+7)]\in\mathbb{Z^+}$}

So \small\text{$\cos[\ln(5x^2-8x+7)]$} gives cosine of positive integers. Therefore,

\small\text{$\longrightarrow\underline{\underline{f(x)\in\{x:x=\cos\theta,\ \theta\in\mathbb{Z^+}\}}}$}

This is the range.

(ii)

\small\text{$\longrightarrow f(x)=\log_2\left(\dfrac{\sin x-\cos x+7\sqrt2}{\sqrt2}\right)$}

\small\text{$\longrightarrow f(x)=\log_2\left(\dfrac{\sqrt2\sin\left(x-\dfrac{\pi}{4}\right)+7\sqrt2}{\sqrt2}\right)$}

\small\text{$\longrightarrow f(x)=\log_2\left(\sin\left(x-\dfrac{\pi}{4}\right)+7\right)$}

\small\text{$\Longrightarrow\sin\left(x-\dfrac{\pi}{4}\right)+7\in(0,\ \infty)$}

\small\text{$\longrightarrow\sin\left(x-\dfrac{\pi}{4}\right)\in(-7,\ \infty)\cap[-1,\ 1]$}

\small\text{$\longrightarrow\sin\left(x-\dfrac{\pi}{4}\right)\in[-1,\ 1]$}

\small\text{$\Longrightarrow\underline{\underline{x\in\mathbb{R}}}$}

This is the domain.

\small\text{$\longrightarrow x\in\mathbb{R}$}

\small\text{$\longrightarrow\sin\left(x-\dfrac{\pi}{4}\right)\in[-1,\ 1]$}

\small\text{$\longrightarrow\sin\left(x-\dfrac{\pi}{4}\right)+7=\dfrac{\sin x-\cos x+7\sqrt2}{\sqrt2}\in[6,\ 8]$}

\small\text{$\longrightarrow\log_2\left(\dfrac{\sin x-\cos x+7\sqrt2}{\sqrt2}\right)\in[\log_26,\ \log_28]$}

\small\text{$\displaystyle\longrightarrow\underline{\underline{f(x)\in[1+\log_23,\ 3]}}$}

This is the range.

(iii) \small\text{$f(x)=\sqrt{1-\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2}$}

\small\text{$\Longrightarrow 1-\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2\in[0,\ \infty)$}

\small\text{$\longrightarrow\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2\in(-\infty,\ 1]\cap[0,\ \infty)$}

\small\text{$\longrightarrow\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2\in[0,\ 1]$}

\small\text{$\longrightarrow\ln\left[\sqrt{\left[x^3+1\right]}\right]\in[-1,\ 1]$}

\small\text{$\longrightarrow\left[\sqrt{\left[x^3+1\right]}\right]\in\left[\dfrac{1}{e},\ e\right]\cap\mathbb{Z}$}

\small\text{$\longrightarrow\left[\sqrt{\left[x^3+1\right]}\right]\in\{1,\ 2\}$}

\small\text{$\Longrightarrow\sqrt{\left[x^3+1\right]}\in[1,\ 3)$}

\small\text{$\longrightarrow\left[x^3+1\right]\in[1,\ 9)\cap\mathbb{Z}$}

\small\text{$\longrightarrow\left[x^3+1\right]\in\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8\}$}

\small\text{$\Longrightarrow x^3+1\in[1,\ 9)$}

\small\text{$\longrightarrow x^3\in[0,\ 8)$}

\small\text{$\longrightarrow\underline{\underline{x\in[0,\ 2)}}$}

This is the domain.

\small\text{$\longrightarrow x\in[0,\ 2)$}

\small\text{$\longrightarrow x^3+1\in[1,\ 9)$}

\small\text{$\longrightarrow\left[x^3+1\right]\in\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8\}$}

\small\text{$\longrightarrow\sqrt{\left[x^3+1\right]}\in\left\{1,\ \sqrt2,\ \sqrt3,\ 2,\ \sqrt5,\ \sqrt6,\ \sqrt7,\ \sqrt8\right\}$}

\small\text{$\longrightarrow\left[\sqrt{\left[x^3+1\right]}\right]\in\left\{1,\ 2\right\}$}

\small\text{$\longrightarrow\ln\left[\sqrt{\left[x^3+1\right]}\right]\in\left\{0,\ \ln2\right\}$}

\small\text{$\longrightarrow\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2\in\left\{0,\ (\ln2)^2\right\}$}

\small\text{$\longrightarrow1-\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2\in\left\{1,\ 1-(\ln2)^2\right\}$}

\small\text{$\longrightarrow\sqrt{1-\left(\ln\left[\sqrt{\left[x^3+1\right]}\right]\right)^2}\in\left\{1,\ \sqrt{1-(\ln2)^2}\right\}$}

\small\text{$\longrightarrow\underline{\underline{f(x)\in\left\{1,\ \sqrt{1-(\ln2)^2}\right\}}}$}

This is the range.


amansharma264: Perfect
Similar questions