Math, asked by cristinleyy, 5 months ago

FIND THE DOMAIN AND RANGE OF THE FOLLOWING RATIONAL FUNCTION​ USE AN NOTATION

Attachments:

Answers

Answered by pulakmath007
1

Domain of the function = R - { 1 }

Range of the function = R - { 1 }

Given : The function

\displaystyle \sf{ f(x) =   \frac{2 + x}{x + 1} }

To find : The domain and range of the function

Solution :

Step 1 of 3 :

Write down the given function

The given function is

\displaystyle \sf{ f(x) =   \frac{2 + x}{x + 1} }

Step 2 of 3 :

Find out the domain

\displaystyle \sf{ f(x) =   \frac{2 + x}{x + 1} }

Clearly f(x) is not well defined where denominator of f(x) vanishes

The denominator vanishes when x + 1 = 0

Which gives x = - 1

Hence domain of the function = R - { 1 }

Step 3 of 3 :

Find the range of the function

Let y = f(x)

Then we have

\displaystyle \sf{ y=   \frac{2 + x}{x + 1} }

\displaystyle \sf{ \implies xy + y = 2 + x }

\displaystyle \sf{ \implies xy  - x =2 - y }

\displaystyle \sf{ \implies x(y  - 1)=2 - y }

\displaystyle \sf{ \implies x =  \frac{2 - y}{y - 1} }

Since x is real

So we have y - 1 ≠ 0

⇒ y ≠ 1

Hence range of the function = R - { 1 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions