find the domain and range of the function f(x)=2+
![f (x) = 2 + \sqrt{x - 1} find \: the \: domain \: and \: range \: of \: the \: function f (x) = 2 + \sqrt{x - 1} find \: the \: domain \: and \: range \: of \: the \: function](https://tex.z-dn.net/?f=f+%28x%29+%3D+2+%2B++%5Csqrt%7Bx+-+1%7D+find+%5C%3A+the+%5C%3A+domain+%5C%3A+and+%5C%3A+range+%5C%3A+of+%5C%3A+the+%5C%3A+function)
Answers
Answered by
0
Answer:
Domain:
x
≤
1
and
x
≥
2
or
x
∣
(
−
∞
,
1
]
∪
[
2
,
∞
)
Range:
y
≥
0
or
y
∣
[
0
,
∞
)
Explanation:
y
=
√
x
2
−
3
x
+
2
=
√
(
x
−
1
)
(
x
−
2
)
;
Domain: under
root should be
≥
0
∴
(
x
−
1
)
(
x
−
2
)
≥
0
When
1
<
x
<
2
sign of
y
is
(
+
)
(
−
)
=
(
−
)
∴
<
0
Therefore for
1
<
x
<
2
;
y
is undefined .
Domain:
x
≤
1
and
x
≥
2
or
x
∣
(
−
∞
,
1
]
∪
[
2
,
∞
)
Range:
y
≥
0
or
y
∣
[
0
,
∞
)
since square root of positive quantity
is also positive.
graph{(x^2-3x+2)^0.5 [-10, 10, -5, 5]}
Similar questions
Economy,
1 month ago
Social Sciences,
1 month ago
Computer Science,
3 months ago
Science,
11 months ago
Hindi,
11 months ago