Math, asked by lucy6421, 1 month ago

Find the domain and range of the function f(x) = x+1/ x−2

Answers

Answered by megdahilius
1

Answer:

When x=1, f(x) = 1+1/1-2

=-2

When x=2, f(x) =2+1/2-2

=0

Answered by TrustedAnswerer19
15

Answer:

Given the function

 \sf \: f(x) =  \frac{x + 1}{x - 2}  \\  \bf \: this \: function \: will \: exist \: if \:and\:only \:if \\  \\  \sf \: x \in \: R \:  \:  \:  \: and \\  \sf \: x - 2 \neq0 \\  \therefore \: \sf \: x \neq \: 2 \\    \red{ \boxed{\green{\sf so \: domain \: D_f \:  = R -  \{2 \}}}} \\  \\  \bf \: we \: assumed \: that \\  \sf \: y = f(x) =  \frac{x + 1}{x - 2}  \\  \therefore \: \sf \: y =  \frac{x + 1}{x - 2}   \\   \sf \implies \: y(x - 2) = x + 1 \\  \sf \implies \:xy - 2y = x + 1 \\   \sf \implies \: xy - x = 2y + 1 \\   \sf \implies \: x(y - 1) = 2y + 1 \\   \sf \implies \: x =  \frac{2y + 1}{y - 1}  \:  \:  \:  \:  -  -  -  - (1) \\  \\  \bf \: eqn.(1) \: will \: exist \: if\:and \:only\:if \\  \\   \sf \: y \in \: R  \:  \:  \: and \: \\ \sf \: y - 1 \neq \: 0 \\  \therefore \: \sf \: y \neq \: 1 \\  \\  \green{ \boxed{{\red { \sf \: so \: range \: R_f =   R -  \{1 \}}}}}

Attachments:
Similar questions