find the domain and range of the function f(x)=x/1+XSquare
Answers
Answered by
2
For the domain, you just need to determine “what can x” be without causing us to divide by zero or doing something else that isn’t allowed. In this case, the only thing that could go wrong would be if x2" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">x2x2 were to equal −1" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">−1−1 because then 1–1=0" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">1–1=01–1=0 which would cause us to divide by 0. However, with real numbers, x2" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">x2x2 can never equal -1. If you were dealing with complex numbers, then we’d just say that x cannot equal i, since i2=−1" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">i2=−1i2=−1 but that’s probably not a concern here. Anyway, the domain would be “all reals”.
For the range, you have to consider what values you can get out of the equation. The first thing that jumps out at me is that all values listed are positive, and the only variables (the x’s) are both squared. So you should never see any negatives in either the numerator or denominator, so right off we know that the range is at least ≥0" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">≥0≥0. The next step I usually take is to plug in a few numbers to “sound out” what values I can get. If I plug in 0, it evaluates to 0. If I plug in ±0.00001" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">±0.00001±0.00001 it generates a really small number over 1+the same really small number…ie, a really small number.
For the range, you have to consider what values you can get out of the equation. The first thing that jumps out at me is that all values listed are positive, and the only variables (the x’s) are both squared. So you should never see any negatives in either the numerator or denominator, so right off we know that the range is at least ≥0" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">≥0≥0. The next step I usually take is to plug in a few numbers to “sound out” what values I can get. If I plug in 0, it evaluates to 0. If I plug in ±0.00001" role="presentation" style="margin: 0px; padding: 0px; outline: 0px; display: inline; font-style: normal; font-weight: normal; line-height: normal; font-size: 14px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">±0.00001±0.00001 it generates a really small number over 1+the same really small number…ie, a really small number.
vinayak44:
pls mark as brainliest
Answered by
1
Answer:
Hiiiiii
Hello
follow me
Similar questions