Math, asked by eshaijin, 1 month ago

Find the domain and range of the functions f(x) = 1 - |x − 2|
Pls answer fast

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = 1 -  |x - 2|

Now, We know that

Domain is defined as set of those real values of 'x' where f(x) is well defined.

Clearly, we observe that f(x) is defined for all real values of x.

So,

\bf\implies \:Domain \: of \: f (x) \: is \:defined \:  \forall \: x \in \:  R

Now, To find the range of f(x).

Range is defined as set of all real values of x taken by f(x) on its domain.

Now, Given function is

\rm :\longmapsto\:f(x) = 1 -  |x - 2|

We know,

 \red{\rm :\longmapsto\: |x - 2| \geqslant 0}

So,

 \red{\rm :\longmapsto\:  - |x - 2| \leqslant 0}

On adding 1 on both sides,

 \red{\rm :\longmapsto\: 1 - |x - 2| \leqslant 0 + 1}

 \red{\rm \implies\:f(x) \leqslant 1}

 \red{\rm \implies\:Range \: of \: f(x) \: is \: ( -  \infty , \: 1] \: }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: x > y \:  \: \rm \implies\: - x <  - y \: }}

\boxed{ \tt{ \: x  <  y \:  \: \rm \implies\: - x  >   - y \: }}

\boxed{ \tt{ \: x   \geqslant   y \:  \: \rm \implies\: - x   \leqslant    - y \: }}

\boxed{ \tt{ \: x   \leqslant   y \:  \: \rm \implies\: - x   \geqslant    - y \: }}

\boxed{ \tt{ \:  |x| < y \:  \: \rm \implies\: - y < x < y \: }}

\boxed{ \tt{ \:  |x|  \leqslant  y \:  \: \rm \implies\: - y  \leqslant  x  \leqslant  y \: }}

\boxed{ \tt{ \:  |x| > y \:  \: \rm \implies\:x <  - y \: or \: x > y \: }}

\boxed{ \tt{ \:  |x|  \geqslant  y \:  \: \rm \implies\:x  \leqslant  - y \: or \: x \geqslant y \: }}

\boxed{ \tt{ \:  |x - z| < y \:  \: \rm \implies\:z - y < x < z + y \: }}

\boxed{ \tt{ \:  |x - z|  \leqslant  y \:  \: \rm \implies\:z - y  \leqslant  x  \leqslant  z + y \: }}

Answered by guptaananya2005
1

Step-by-step explanation:

Domain = All real numbers.

Range of f(x) : is f(x) is less than or equals to 1

Similar questions