Find the domain and range of the real function f(x) = x/1+x2.
Answers
Answered by
30
━━━━━━━━━━━━━━━━━━━━━━━━━
Find the domain and range of the real function f(x) = x/1+x^2.
━━━━━━━━━━━━━━━━━━━━━━━━━
➡️Given real function is f(x) = x/1+x^2.
➡️1 + x^2 ≠ 0
➡️x^2 ≠ -1
➡️Domain : x ∈ R
➡️Let f(x) = y
➡️y = x/1+x^2
➡️⇒ x = y(1 + x^2)
➡️⇒ yx^2 – x + y = 0
➡️This is quadratic equation with real roots.
➡️(-1)^2 – 4(y)(y) ≥ 0
➡️1 – 4y^2 ≥ 0
➡️⇒ 4y^2 ≤ 1
➡️⇒ y^2 ≤1/4
➡️⇒ -½ ≤ y ≤ ½
➡️⇒ -1/2 ≤ f(x) ≤ ½
➡️Range = [-½, ½]
━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
57
Answer:
SOLUTION:-
➡️Given real function is f(x) = x/1+x^2.
➡️1 + x^2 ≠ 0
➡️x^2 ≠ -1
➡️Domain : x ∈ R
➡️Let f(x) = y
➡️y = x/1+x^2
➡️⇒ x = y(1 + x^2)
➡️⇒ yx^2 – x + y = 0
➡️This is quadratic equation with real roots.
➡️(-1)^2 – 4(y)(y) ≥ 0
➡️1 – 4y^2 ≥ 0
➡️⇒ 4y^2 ≤ 1
➡️⇒ y^2 ≤1/4
➡️⇒ -½ ≤ y ≤ ½
➡️⇒ -1/2 ≤ f(x) ≤ ½
➡️Range = [-½, ½]✔
Step-by-step explanation:
HOPE IT HELP YOU ✌✌
Similar questions