Math, asked by SabanaTazeem, 9 months ago

Find the domain and range of the real function f(x) = x/1+x2.​

Answers

Answered by ITZINNOVATIVEGIRL588
30

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

Find the domain and range of the real function f(x) = x/1+x^2.

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

➡️Given real function is f(x) = x/1+x^2.

➡️1 + x^2 ≠ 0

➡️x^2 ≠ -1

➡️Domain : x ∈ R

➡️Let f(x) = y

➡️y = x/1+x^2

➡️⇒ x = y(1 + x^2)

➡️⇒ yx^2 – x + y = 0

➡️This is quadratic equation with real roots.

➡️(-1)^2 – 4(y)(y) ≥ 0

➡️1 – 4y^2 ≥ 0

➡️⇒ 4y^2 ≤ 1

➡️⇒ y^2 ≤1/4

➡️⇒ -½ ≤ y ≤ ½

➡️⇒ -1/2 ≤ f(x) ≤ ½

➡️Range = [-½, ½]

\Large\mathcal\green{FOLLOW \: ME}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Rudranil420
57

Answer:

SOLUTION:-

➡️Given real function is f(x) = x/1+x^2.

➡️1 + x^2 ≠ 0

➡️x^2 ≠ -1

➡️Domain : x ∈ R

➡️Let f(x) = y

➡️y = x/1+x^2

➡️⇒ x = y(1 + x^2)

➡️⇒ yx^2 – x + y = 0

➡️This is quadratic equation with real roots.

➡️(-1)^2 – 4(y)(y) ≥ 0

➡️1 – 4y^2 ≥ 0

➡️⇒ 4y^2 ≤ 1

➡️⇒ y^2 ≤1/4

➡️⇒ -½ ≤ y ≤ ½

➡️⇒ -1/2 ≤ f(x) ≤ ½

➡️Range = [-½, ½]✔

Step-by-step explanation:

HOPE IT HELP YOU ✌✌

Similar questions