Find the domain and range of the real function f(x) = x/1+x2
Answers
I don't actually but I will try my best and I will give you answer it later
Step-by-step explanation:
➡️Given real function is f(x) = x/1+x^2.
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0➡️⇒ 4y^2 ≤ 1
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0➡️⇒ 4y^2 ≤ 1➡️⇒ y^2 ≤1/4
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0➡️⇒ 4y^2 ≤ 1➡️⇒ y^2 ≤1/4➡️⇒ -½ ≤ y ≤ ½
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0➡️⇒ 4y^2 ≤ 1➡️⇒ y^2 ≤1/4➡️⇒ -½ ≤ y ≤ ½➡️⇒ -1/2 ≤ f(x) ≤ ½
➡️Given real function is f(x) = x/1+x^2.➡️1 + x^2 ≠ 0➡️x^2 ≠ -1➡️Domain : x ∈ R➡️Let f(x) = y➡️y = x/1+x^2➡️⇒ x = y(1 + x^2)➡️⇒ yx^2 – x + y = 0➡️This is quadratic equation with real roots.➡️(-1)^2 – 4(y)(y) ≥ 0➡️1 – 4y^2 ≥ 0➡️⇒ 4y^2 ≤ 1➡️⇒ y^2 ≤1/4➡️⇒ -½ ≤ y ≤ ½➡️⇒ -1/2 ≤ f(x) ≤ ½➡️Range = [-½, ½]
Please Mark me as Brainliest