Math, asked by ragingthunder69, 1 month ago

find the domain and range of x​

Attachments:

Answers

Answered by shadowsabers03
2

We're given to solve,

\longrightarrow\sqrt[3]{2^{\frac{3x-1}{x-1}}}<8^{\frac{x-3}{3x-7}}

or,

\longrightarrow\left(2^{\frac{3x-1}{x-1}}\right)^{\frac{1}{3}}<\left(2^3\right)^{\frac{x-3}{3x-7}}

\longrightarrow2^{\frac{3x-1}{x-1}\cdot\frac{1}{3}}<2^{3\cdot\frac{x-3}{3x-7}}

\longrightarrow2^{\frac{3x-1}{3(x-1)}}<2^{\frac{3(x-3)}{3x-7}}

Taking log to the base 2,

\longrightarrow\dfrac{3x-1}{3(x-1)}<\dfrac{3(x-3)}{3x-7}

Muliply both sides by 3,

\longrightarrow\dfrac{3x-1}{x-1}<\dfrac{9(x-3)}{3x-7}

Taking RHS to LHS,

\longrightarrow\dfrac{3x-1}{x-1}-\dfrac{9(x-3)}{3x-7}<0

\longrightarrow\dfrac{(3x-1)(3x-7)-9(x-3)(x-1)}{(x-1)(3x-7)}<0

\longrightarrow\dfrac{9x^2-24x+7-9(x^2-4x+3)}{(x-1)(3x-7)}<0

\longrightarrow\dfrac{9x^2-24x+7-9x^2+36x-27}{(x-1)(3x-7)}<0

\longrightarrow\dfrac{12x-20}{(x-1)(3x-7)}<0

Divide by 4.

\longrightarrow\dfrac{3x-5}{(x-1)(3x-7)}<0

This inequality is solved by wavy curve method as follows.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\multiput(15,0)(15,0){3}{\circle{1.5}}\put(15,-5){1}\put(27.5,-5){$\frac{5}{3}$}\put(45,-5){$\frac{7}{3}$}\multiput(0,-15)(45,15){2}{\qbezier(0,0)(7.5,7.5)(15,15)}\qbezier(15,0)(22.5,7.5)(30,0)\qbezier(30,0)(37.5,-7.5)(45,0)\end{picture}

Hence the solution to our inequality is,

\longrightarrow\underline{\underline{x\in\bigg(-\infty,\ 1\bigg)\cup\left(\dfrac{5}{3},\ \dfrac{7}{3}\right)}}

Answered by Anonymous
1

\huge\bf\fbox\red{Answer:-}

We're given to solve,

\longrightarrow\sqrt[3]{2^{\frac{3x-1}{x-1}}} < 8^{\frac{x-3}{3x-7}}

or,

\longrightarrow\left(2^{\frac{3x-1}{x-1}}\right)^{\frac{1}{3}} < \left(2^3\right)^{\frac{x-3}{3x-7}}

\longrightarrow2^{\frac{3x-1}{x-1}\cdot\frac{1}{3}} < 2^{3\cdot\frac{x-3}{3x-7}}

\longrightarrow2^{\frac{3x-1}{3(x-1)}} < 2^{\frac{3(x-3)}{3x-7}}

Taking log to the base 2,

\longrightarrow\dfrac{3x-1}{3(x-1)} < \dfrac{3(x-3)}{3x-7}

Muliply both sides by 3,

\longrightarrow\dfrac{3x-1}{x-1} < \dfrac{9(x-3)}{3x-7}

Taking RHS to LHS,

\longrightarrow\dfrac{3x-1}{x-1}-\dfrac{9(x-3)}{3x-7} < 0

\longrightarrow\dfrac{(3x-1)(3x-7)-9(x-3)(x-1)}{(x-1)(3x-7)} < 0

\longrightarrow\dfrac{9x^2-24x+7-9(x^2-4x+3)}{(x-1)(3x-7)} < 0

\longrightarrow\dfrac{9x^2-24x+7-9x^2+36x-27}{(x-1)(3x-7)} < 0

\longrightarrow\dfrac{12x-20}{(x-1)(3x-7)} < 0

Divide by 4.

\longrightarrow\dfrac{3x-5}{(x-1)(3x-7)} < 0

This inequality is solved by wavy curve method as follows.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\put(0,0){\line(1,0){60}}\multiput(15,0)(15,0){3}{\circle{1.5}}\put(15,-5){1}\put(27.5,-5){$\frac{5}{3}$}\put(45,-5){$\frac{7}{3}$}\multiput(0,-15)(45,15){2}{\qbezier(0,0)(7.5,7.5)(15,15)}\qbezier(15,0)(22.5,7.5)(30,0)\qbezier(30,0)(37.5,-7.5)(45,0)\end{picture}

Hence the solution to our inequality is,

\longrightarrow\underline{\underline{x\in\bigg(-\infty,\ 1\bigg)\cup\left(\dfrac{5}{3},\ \dfrac{7}{3}\right)}}

Similar questions