Math, asked by samuelarum07, 19 days ago

find the domain and range of X/x^2+1

Answers

Answered by amansharma264
1

EXPLANATION.

Domain and range :

Equation : (x)/(x² + 1).

As we know that,

Domain : (x)/(x² + 1).

⇒ x² + 1 ≠ 0.

⇒ x² ≠ - 1.

Domain x ∈ R.

Range : (x)/(x² + 1).

We can write equation as,

⇒ y = (x)/(x² + 1).

⇒ y(x² + 1) = (x).

⇒ yx² + y = x.

⇒ yx² - x + y = 0.

As we know that,

x are real then, D ≥ 0.

⇒ b² - 4ac ≥ 0.

⇒ (-1)² - 4(y)(y) ≥ 0.

⇒ 1 - 4y² ≥ 0.

⇒ 4y² - 1 ≤ 0.

⇒ (2y)² - (1)² ≤ 0.

⇒ (2y + 1)(2y - 1) ≤ 0.

Zeroes are,

⇒ 2y + 1 = 0.

⇒ y = - 1/2.

⇒ 2y - 1 = 0.

⇒ 2y = 1.

⇒ y = 1/2.

Put this point on wavy curve method, we get.

Range x ∈ [-1/2, 1/2].

Similar questions