Math, asked by Anonymous, 1 year ago

Find the domain and range (with steps )

f(x) =  \frac{x}{ {x}^{2}  + 2}

Answers

Answered by Anonymous
4

Question :-

Find the domain and range (with steps )

f(x) = \frac{x}{ {x}^{2} + 2}

Answer:-

Explanation :-

We have,

f(x) =  \frac{x}{ {x}^{2}  + 2}  \\ let \:  \\  \\ \implies \:  y \:  =  \frac{x}{ {x}^{2} + 2 }  \\  \\

Now find the value of" x" in terms of" y",

 \implies \:  y \: {x}^{2}  + 2y = x \\  \\  \implies \: y \: {x}^{2}   - x + 2y = 0 \\  \\ solve \: this \: equation \:  \\  \\  \implies \: y \:  {x}^{2}  - x =  - 2y \\  \\  \implies \: x(xy - 1) =  - 2y \\  \\ case \: (1) \\  \\  \implies \: x =  - 2y \\  \\ exchange \: x \: to \: y \: and \: y \: to \: x \\  \\  \implies \: y =  - 2x \\  \\ case \: (2) \\  \\  \implies \: xy - 1 =  - 2y \\  \\  \implies \: xy = 1  - 2y \\  \\  \implies \: x =  \frac{1 - 2y}{y}  \\  \\ again \: exchange \:  \\  \\  \implies \: y =  \frac{1 - 2x}{x}  \\  \\

Here ,x≠0

x € R ( any real number ),

Similar questions