Math, asked by venombmgo, 1 month ago

find the domain and the range of 1/(4-cos3x)​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{f(x)=\dfrac{1}{4-cos(3x)} }

The given function will be defined, iff \tt{4-cos(3x)\ne0}

\tt{\implies\,cos(3x)\ne4}

This is always true, because \rm{cos(\theta)\in[-1,1]}

So,

\sf{\large{\bold{\green{dom(f)\in\,\mathbb{R}}}}}

Now, let \sf{y=\dfrac{1}{4-cos(3x)}}

\sf{\implies4-cos(3x)=\dfrac{1}{y}}

\sf{\implies\,cos(3x)=4-\dfrac{1}{y}}

\sf{\implies\,3x=cos^{-1}\bigg(4-\dfrac{1}{y}\bigg)}

According to the definition of an inverse trigonometric function,

\sf{-1\le4-\dfrac{1}{y}\le1}

\sf{\implies-1-4\le-\dfrac{1}{y}\le1-4}

\sf{\implies-5\le-\dfrac{1}{y}\le-3}

\sf{\implies5\ge\dfrac{1}{y}\ge3}

\sf{\implies\dfrac{1}{5} \le\,y\le\dfrac{1}{3} }

Hence,

\sf{\large{\bold{\green{range(f)\in\,\bigg[\dfrac{1}{5},\dfrac{1}{3}  \bigg]}}}}

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{4 - cos3x}

Domain of function is defined as the set of those values of x for which function is well defined.

We know,

\rm :\longmapsto\: - 1 \leqslant cos3x \leqslant 1

\bf\implies \:4 - cos3x \ne \: 0

\bf\implies \:x \:  \in \: R

Now, To find Range

We know,

\rm :\longmapsto\: - 1 \leqslant cos3x \leqslant 1

\rm :\implies\: - 1 \leqslant  - cos3x \leqslant 1

Adding 4 in each term

\rm :\implies\: 4- 1 \leqslant 4 - cos3x \leqslant 1 + 4

\rm :\implies\: 3\leqslant 4 - cos3x \leqslant 5

\bf\implies \:\dfrac{1}{5}  \leqslant \dfrac{1}{4 - cos3x}  \leqslant \dfrac{1}{3}

\bf\implies \:\dfrac{1}{5}  \leqslant f(x)  \leqslant \dfrac{1}{3}

\bf\implies \:f(x) = \bigg[\dfrac{1}{5}, \: \dfrac{1}{3}  \bigg]

Additional Information :-

\boxed{ \tt{ \:  |x| < y \:  \: \tt\implies\: - y < x < y \:  \: }}

\boxed{ \tt{ \:  |x|  \leqslant  y \:  \: \tt\implies\: - y  \leqslant  x  \leqslant  y \:  \: }}

\boxed{ \tt{ \:  |x - z|  \leqslant  y \:  \: \tt\implies\: z- y  \leqslant  x  \leqslant  y  + z\:  \: }}

\boxed{ \tt{ \:  |x|  \geqslant  y \:  \: \tt\implies\: x  \leqslant   - y \:  \: or \:     x \geqslant y\:  \: }}

\boxed{ \tt{ \:  |x - z|  \geqslant  y \:  \: \tt\implies\: x  \leqslant   z- y \:  \: or \:     x \geqslant \: z +  y\:  \: }}

\boxed{ \tt{ \: a > b \:  \tt \:  \implies \:  \frac{1}{a} <  \frac{1}{b} \:  \: }}

\boxed{ \tt{ \: a  \geqslant  b \:  \tt \:  \implies \:  \frac{1}{a}  \leqslant  \frac{1}{b} \:  \: }}

Similar questions