Math, asked by noorulsumaiya, 7 months ago

find the domain of 1/1-2sinx

Answers

Answered by tarracharan
1

{\bold{\blue{\sf{Let\:that\:expression\:as\:f(x)}}}}

{\bold{→}}{\bold{\red{\sf{1-2sinx≠0}}}}

{\bold{→}}{\bold{\red{\sf{sinx≠\frac{1}{2}}}}}

{\bold{→}}{\bold{\red{\sf{x≠sin^{-1} (\frac{1}{2})}}}}

{\boxed{\red{\sf{Domain \: x∈R-{\frac{π}{6}}}}}}

{\bold{\underline{\green{Extra\: information:}}}}

 - 1 \leqslant   \sin(x )  \leqslant 1 \\  - 2 \leqslant 2 \sin(x)  \leqslant 2 \\  - ( - 2) \geqslant  - 2 \sin(x) \geqslant  - 2  \\ 1  +  2  \geqslant 1   -  2 \sin(x)   \geqslant  1 - 2 \ \\   \ 3 \geqslant  1 - 2 \sin(x)   \geqslant   - 1 \\  \frac{1}{3}   \geqslant   \frac{1}{1 - 2 \sin(x) }    \geqslant  -  \frac{1}{1}

{\bold{\sf{Range\: f(x)∈[-1,\frac{1}{3}]}}}

Similar questions