Math, asked by suchig166, 6 months ago

find the domain of f of x equal to log of x square minus4xplus3

Answers

Answered by Anonymous
18

  \bf \large \color{pink}{Hola! }

GiveN :

 \mapsto \sf \: f(x) =  log( {x}^{2}  - 4x + 3)

________________________

SolutioN :

 \tt \:  \underline{Domain \:  \:  of  \:  \: function \: ( D_f) \: :}

 \sf \: ( {x}^{2}  - 4x + 3)  \:  \: should \:  \: always \:  \: be \:  \: greater  \:  \: than \:  \: 0

 \sf \: for \:  \: it \:  \: to \:  \: be \:  \: a \: \:  function

  \mapsto\sf \:  {( {x}^{2}  - 4x + 3)} > 0

 \implies \:  \sf(x - 3)(x - 1) > 0

 \implies { { { \sf \: x \in \: ( \: 1 \: , \:  \infty \: ) -  \{3 \}}}}

 \mapsto \underline{ \boxed{ \sf{D_f = ( \: 1 \: , \:  \infty \: ) -  \{3 \}}}}

_______________________

 \tt \:  \underline{ Range\:  \:  of  \:  \: function \: ( R_f) \: :}

 \sf \: Range  \:  \: of  \:  \: function \:  \:  log \:  \:  is  \:  \: always  \:  \:  \: R {}^+ +  \{0 \}

 \mapsto \underline{ \boxed{ \sf{R_f =R {}^+ +  \{0 \} }}}

_______________________

ConcepT BoosteR :

→ For better understanding we need to learn the Graphical representation of functions

[ GRAPH IS ATTACHED IN PHOTO ]

_______________

HOPE THIS IS HELPFUL...

Attachments:
Similar questions