Math, asked by vijaykumar72, 1 year ago

find the domain of f(x)=sec^-1 2x​

Answers

Answered by shadowsabers03
15

We have to find the domain of,

f(x)=\sec^{-1}(2x)

We know \cos\theta\in[-1,\ 1].

This gives  \sec\theta\in(-\infty,\ -1]\cup[1,\ \infty).

Therefore,  2x\in(-\infty,\ -1]\cup[1,\ \infty)

\implies \boxed{x\in\left(-\infty,\ -\dfrac{1}{2}\right]\cup\left[\dfrac{1}{2},\ \infty\right)}

Hence the domain is got.

Attachments:

Anonymous: Nice : )
Answered by AbhijithPrakash
12

Answer:

\mathrm{Domain\:of\:}\:\arcsec \left(2x\right)\::\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-\dfrac{1}{2}\quad \mathrm{or}\quad \:x\ge \dfrac{1}{2}\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-\dfrac{1}{2}\right]\cup \:\left[\dfrac{1}{2},\:\infty \:\right)\end{bmatrix}

Step-by-step explanation:

\blue{\mathrm{Domain\:de finition}}

  • The domain of a function is the set of input or argument values for which the function is real and defined

\green{\mathrm{Find\:known\:functions\:domain\:restrictions}:}

\gray{\arcsec \left(f\left(x\right)\right)\quad \Rightarrow \quad \:f\left(x\right)\le \:-1\quad \mathrm{or}\quad \:f\left(x\right)\ge \:1}

\black{\mathrm{Solve\:}\:2x\le \:-1\quad \mathrm{or}\quad \:2x\ge \:1:}

\gray{\mathrm{Solve\:}\:2x\le \:-1:\quad x\le \:-\dfrac{1}{2}}

\gray{\mathrm{Solve\:}\:2x\ge \:1:\quad x\ge \dfrac{1}{2}}

x\le \:-\dfrac{1}{2}\quad \mathrm{or}\quad \:x\ge \dfrac{1}{2}

\gray{\mathrm{The\:function\:domain}}

x\le \:-\dfrac{1}{2}\quad \mathrm{or}\quad \:x\ge \dfrac{1}{2}

Attachments:

Anonymous: Awesome : )
AbhijithPrakash: :)
Similar questions