find
the domain of F(x) = x² 3x + 4/
x^2-5x+4
Answers
Answered by
0
Answer:
Domain value of function f(x)f(x) is (1,4)(1,4) .
Step-by-step explanation:
Given,
Domain of the function f(x)=\frac{x^{2}+3x+5}{x^{2}-5x+4}f(x)=
x
2
−5x+4
x
2
+3x+5
∴ f(x)=\frac{x^{2}+3x+5}{x^{2}-5x+4}=\frac{p(x)}{q(x)}f(x)=
x
2
−5x+4
x
2
+3x+5
=
q(x)
p(x)
If q(x)=0q(x)=0 then the above function f(x)f(x) can't be defined.
So, x^{2} -5x+4=0x
2
−5x+4=0
⇒x^{2} -4x-x+4=0x
2
−4x−x+4=0
⇒x(x-4)-(x-4)=0x(x−4)−(x−4)=0
⇒(x-1)(x-4)=0(x−1)(x−4)=0
∴ x=1,4x=1,4
Similar questions