Math, asked by xyz945, 2 months ago

find the domain of fx=sin^-1log6(3x)​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {sin}^{ - 1}( log_{6}(3x))

We know,

\rm :\longmapsto\: {sin}^{ - 1}x \: is \: defined \: if

\rm :\longmapsto\: - 1 \leqslant x \leqslant 1

So it implies,

\rm :\longmapsto\:y =  {sin}^{ - 1}( log_{6}(3x)) \: is \: defined \: if \:

\rm :\longmapsto\: - 1 \leqslant  log_{6}(3x)  \leqslant 1

\rm :\longmapsto\: {6}^{ - 1} \leqslant 3x \leqslant  {6}^{1}

 \:  \:  \:  \:  \:  \: \green{\bigg \{ \because \: \tt \:  log_{x}(y) = z \implies \: y =  {x}^{z}   \bigg \}}

\rm :\longmapsto\:  \dfrac{1}{6} \leqslant 3x \leqslant  {6}^{1}

\rm :\longmapsto\:  \dfrac{1}{18} \leqslant x \leqslant 2

\bf\implies \:x \:  \in \:  \bigg[\dfrac{1}{18}, \: 2 \bigg]

Additional Information :-

Domain :- Let f(x) be a function, then set of those values of x where f(x) is well defined is called domain.

Range :-

To find the range of f(x)

Step : - 1. Let y = f(x)

Step :- 2. Express x in terms of y, say x = g(y).

Step :- 3. Find the domain of g(y).

Step :- 4. This will be the range of f(x).

Similar questions