Math, asked by Anonymous, 1 year ago

Find the domain of
f(x) =  \sqrt{1 - x}  -  \sin( \frac{2x - 1}{3} )  \\

Answers

Answered by rishu6845
3

Answer:

plzz give me brainliest ans and plzzzz follow me please

Attachments:
Answered by Anonymous
16

Answer:

\displaystyle{\implies(-\infty , \ 1]}

Step-by-step explanation:

Given :  

\displaystyle{f(x)=\sqrt{1-x}-\sin \left(\dfrac{2x-1}{3}\right)}

We have to find Domain here

\displaystyle{f(x)=\sqrt{1-x}-\sin \left(\dfrac{2x-1}{3}\right)}\\\\\displaystyle \text{Condition first since no inside square root value}\\\\\displaystyle \text{should be greater than or equal to zero}\\\\\displaystyle{\sqrt{1-x} \ \geq0}\\\\\displaystyle{1-x\ \geq0}\\\\\displaystyle{1 \ \geq x}\\\\\displaystyle{x\leq 1}\\\\\displaystyle{\implies (- \infty , \ 1]}\\\\\displaystyle \text{Let it is as A}

\displaystyle{Now \ for \implies \sin \left(\dfrac{2x-1}{3}\right)}\\\\\displaystyle \text{$x \in\math{R}$ Let take it B}\\\\\displaystyle \text{Since sine function exist for every value of x}\\\\\displaystyle \text{So final interval is $A \cap B $}\\\\\displaystyle{\implies (- \infty , \ 1]}

So , the Domain for f ( x)  is    \displaystyle{\implies(-\infty , \ 1]}

Similar questions