Math, asked by ayush08chauhan06, 10 months ago

find the domain of the following f(x)=x²+2x+1 / x²-8x+12​

Answers

Answered by Anonymous
5

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \star \:  \: {\sf{  f(x) = \frac{ {x}^{2} + 2x + 1 }{ {x}^{2}  + 8x + 12} }} \\ \\

{\bf{\blue{\underline{To\:Find:}}}}

  • Domain=?

{\bf{\blue{\underline{Now:}}}}

For f to be defined,

 : \implies{\sf{  {x}^{2} - 8x + 12 \neq0 }} \\ \\

 : \implies{\sf{  {x}^{2} - 6x  - 2x+ 12 \neq0 }} \\ \\

 : \implies{\sf{  {x} (x- 6) - 2(x - 6) \neq0 }} \\ \\

 : \implies{\sf{  (x- 2) (x - 6) \neq0 }} \\ \\

 : \implies{\sf{   x \neq2,6 }} \\ \\

Now f is defined for real numbers except 2,6

  \dagger \:\boxed{\sf{ D_{ f}  = <strong>R</strong> -   \{{ 2,6 \}} \: }}\\ \\

Answered by Anonymous
0

SOLUTION ⚜️

 given \: f(x) = \frac{ {x}^{2} + 2x + 1 }{ {x}^{2}  - 8x + 12}

Here, f(x) is an rational function of x as \frac{ {x}^{2} + 2x + 1 }{ {x}^{2}  - 8x + 12} is rational expression.

 \therefore f(x) \: assumes \: real \: values \: x \: espects  \\  for \: the \: values \: of \: x \: for \: which \:  {x}^{2}  - 8x + 12 = 0

i.e.,(x - 6)(x - 2) = 0 \rightarrow x = 6,2 \\  \therefore domain \: of \: f(x)

= R-{2,6}

Similar questions