Math, asked by pavyasingh, 1 day ago

Find the domain of the following function

f(x) =  {sin}^{ - 1}  \sqrt{x - 1}

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  {sin}^{ - 1} \sqrt{x - 1}  \\

We know,

\boxed{\sf{  \:Domain \: of \:  {sin}^{ - 1} x \: is \: x \:  \in \: [ - 1,1] \: }} \\

So, for the given function

\rm \:  \sqrt{x - 1}  \:  \in \: [ - 1, \: 1] \\

\rm \:  - 1 \leqslant  \sqrt{x - 1}  \leqslant 1 \\

So, on squaring both sides, we get

\rm \: 0 \leqslant x - 1 \leqslant 1 \\

On adding 1 in each term, we get

\rm \: 0 + 1 \leqslant x - 1 + 1 \leqslant 1  + 1\\

\rm \: 1 \leqslant x \leqslant 2 \\

\rm\implies \:Domain \: of \:  {sin}^{ - 1}  \sqrt{x - 1}  \: is \:  \: x \:  \in \: [1, \: 2] \:  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y =  {sin}^{ - 1}(sinx) & \sf  x \:  \: if -\dfrac{\pi  }{2} \leqslant x \leqslant \dfrac{\pi  }{2}\\ \\ \sf y =  {cos}^{ - 1}(cosx) & \sf x \:  \: if \: 0 \leqslant y \leqslant \pi \\ \\ \sf y =  {tan}^{ - 1}(tanx) & \sf x \:  \: if \:  - \dfrac{\pi  }{2} < x < \dfrac{\pi  }{2}\\ \\ \sf y =  {cosec}^{ - 1}(cosecx) & \sf x \:  \: if \: x \:  \in \: \bigg[ - \dfrac{\pi}{2}, \: \dfrac{\pi  }{2}\bigg] -  \{0 \}\\ \\ \sf y =  {sec}^{ - 1}(secx) & \sf x \:  \: if \: x \:  \in \: [0, \: \pi] \:   -  \: \bigg\{\dfrac{\pi  }{2}\bigg\}\\ \\ \sf y =  {cot}^{ - 1}(cotx) & \sf x \:  \: if \:  \:  \in \: \bigg( -  \dfrac{\pi  }{2} , \dfrac{\pi  }{2}\bigg) -  \{0 \} \end{array}} \\ \end{gathered} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Answered by prajapatisaroj415
1

Answer:

the square root to be defined:

x−1≥0⟹x≥1 (1)

For inverse sine to be defined,

−1≤

x−1

≤1

As square is always non-negative:

0≤

x−1

≤1

⟹0≤x−1≤1

⟹1≤x≤2 (2)

Intersection of the two intervals (1) and (2) gives:

x∈[1,2]

Step-by-step explanation:

hope \: it \: helps \: brainlist \: answer

Similar questions